7.2.6
Cohesion-Tension Theory
Cohesion-Tension Theory
Cohesion-Tension Theory
Water and inorganic ions travel up the xylem through cohesion and tension. The steps involved in this process are:


1) Transpiration
1) Transpiration
- Some of the water in the leaves is used in photosynthesis.
- Most of the water in the leaves evaporates in a process called transpiration.


2) Tension
2) Tension
- The loss of water from the leaves creates tension in the xylem.
- Tension is the formation of hydrogen bonds between water molecules and the sides of the xylem vessel elements.
- Water in the xylem is pulled upwards by this tension towards the leaves.


3) Cohesion
3) Cohesion
- Individual water molecules also form hydrogen bonds with each other. This process is called cohesion.
- When water molecules are pulled up the xylem, other molecules of water are also pulled upwards due to cohesion.
- The combination of cohesion and tension together continuously pull water upwards to replace water that has been lost in the leaves by transpiration.


4) Diffusion in the roots
4) Diffusion in the roots
- When water is pulled up the stem, the water potential at the bottom of the plant decreases.
- Water diffuses into the roots via osmosis down its water potential gradient.
1Unity & Diversity - Molecules
1.1Water
1.2DNA Structure & Replication
1.3Transcription & Gene Expression
2Unity & Diversity - Cells
2.1The Origin of Cells
2.2Introduction to Cells
2.3Ultrastructure of Cells
2.4Cell Division
2.5Structure of DNA & RNA
2.6DNA Replication, Transcription & Translation
2.7Cell Respiration
2.8Photosynthesis
2.9Viruses
3Unity & Diversity - Organisms
3.1Diversity of Organisms
3.2Evidence for Evolution
4Unity & Diversity - Ecosystems
4.1Classification
4.3Evolution & Speciation
4.3.1Evidence for Evolution - Fossils & DNA
4.3.2Evidence for Evolution - Anatomy & Geography
4.3.3IB Multiple Choice - Evidence for Evolution
4.3.4Extended Response - DNA & Evolution
4.3.5Populations
4.3.6Mutations, Genetic Drift, & Gene Flow
4.3.7Speciation
4.3.8Rate of Speciation
4.3.9Allopatric & Sympatric Speciation
4.4Conservation of Biodiversity
5Form & Function - Molecules
6Form & Function - Cells
6.1Membranes & Membrane Transport
6.2Organelles & Compartmentalization
6.3Cell Specialization
7Form & Function - Organisms
7.2Transport
7.3Muscle & Motility
8Form & Function - Ecosystems
8.1Species, Communities & Ecosytems
8.3Carbon Cycle
9Interaction & Interdependence - Molecules
9.1Enzymes
9.2Metabolism
9.3Cell Respiration
10Interaction & Interdependence - Cells
10.1Chemical Signalling
10.2Neural Signalling
10.3Adaptation to Environment
10.4Ecological Niches
11Interaction & Interdependence - Organisms
11.1Integration of Body Systems
12Interaction & Interdependence - Ecosystems
12.1Populations & Communities
12.2Transfers of Energy & Matter
13Continuity & Change - Molecules
13.1DNA Replication
13.2Protein Synthesis
14Continuity & Change - Cells
15Continuity & Change - Organisms
15.1Inheritance
15.1.1Non-Nuclear Inheritance
15.1.2Linked Genes
15.1.3IB Multiple Choice - Non-Mendelian Genetics
15.1.4Extended Response - Inheritance
15.1.5Introduction to Non-Mendelian Inheritance
15.1.6Chi-Squared Test
15.1.7End of Topic Quiz - Inheritance
15.1.8Sex-Linked Genes
15.1.9Grade 4-5 (Scientific Practices) - Inheritance
16Continuity & Change - Ecosystems
16.1Natural Selection
16.2Stability & Change
Jump to other topics
1Unity & Diversity - Molecules
1.1Water
1.2DNA Structure & Replication
1.3Transcription & Gene Expression
2Unity & Diversity - Cells
2.1The Origin of Cells
2.2Introduction to Cells
2.3Ultrastructure of Cells
2.4Cell Division
2.5Structure of DNA & RNA
2.6DNA Replication, Transcription & Translation
2.7Cell Respiration
2.8Photosynthesis
2.9Viruses
3Unity & Diversity - Organisms
3.1Diversity of Organisms
3.2Evidence for Evolution
4Unity & Diversity - Ecosystems
4.1Classification
4.3Evolution & Speciation
4.3.1Evidence for Evolution - Fossils & DNA
4.3.2Evidence for Evolution - Anatomy & Geography
4.3.3IB Multiple Choice - Evidence for Evolution
4.3.4Extended Response - DNA & Evolution
4.3.5Populations
4.3.6Mutations, Genetic Drift, & Gene Flow
4.3.7Speciation
4.3.8Rate of Speciation
4.3.9Allopatric & Sympatric Speciation
4.4Conservation of Biodiversity
5Form & Function - Molecules
6Form & Function - Cells
6.1Membranes & Membrane Transport
6.2Organelles & Compartmentalization
6.3Cell Specialization
7Form & Function - Organisms
7.2Transport
7.3Muscle & Motility
8Form & Function - Ecosystems
8.1Species, Communities & Ecosytems
8.3Carbon Cycle
9Interaction & Interdependence - Molecules
9.1Enzymes
9.2Metabolism
9.3Cell Respiration
10Interaction & Interdependence - Cells
10.1Chemical Signalling
10.2Neural Signalling
10.3Adaptation to Environment
10.4Ecological Niches
11Interaction & Interdependence - Organisms
11.1Integration of Body Systems
12Interaction & Interdependence - Ecosystems
12.1Populations & Communities
12.2Transfers of Energy & Matter
13Continuity & Change - Molecules
13.1DNA Replication
13.2Protein Synthesis
14Continuity & Change - Cells
15Continuity & Change - Organisms
15.1Inheritance
15.1.1Non-Nuclear Inheritance
15.1.2Linked Genes
15.1.3IB Multiple Choice - Non-Mendelian Genetics
15.1.4Extended Response - Inheritance
15.1.5Introduction to Non-Mendelian Inheritance
15.1.6Chi-Squared Test
15.1.7End of Topic Quiz - Inheritance
15.1.8Sex-Linked Genes
15.1.9Grade 4-5 (Scientific Practices) - Inheritance
16Continuity & Change - Ecosystems
16.1Natural Selection
16.2Stability & Change
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books