6.2.2
Subcellular Components & Organelles
The Nucleus
The Nucleus
The nucleus is a big organelle that contains the cell’s DNA and is surrounded by a nuclear envelope. The largest sub-structure within the nucleus is the nucleolus.


Structure of the nuclear envelope
Structure of the nuclear envelope
- The nuclear envelope is a double-membrane structure that has a number of pores.
- Both the inner and outer membranes of the nuclear envelope are phospholipid bilayers.


Function of the nuclear envelope
Function of the nuclear envelope
- The pores in the nuclear envelope control the passage of ions, molecules and RNA between the nucleoplasm and cytoplasm.


Structure of the nucleus
Structure of the nucleus
- The nucleoplasm is the semi-solid fluid inside the nucleus, where we find the chromatin and the nucleolus.
- In eukaryotes, the nucleus contains linear chromosomes that are made up of DNA.
- There is an area within the nucleus called the nucleolus (plural = nucleoli).


Function of the nucleus
Function of the nucleus
- The nucleus controls the actions of the cell.
- DNA in the nucleus contains instructions for the synthesis of proteins.
- Ribosomal RNA is joined together with associated proteins in the nucleolus to assemble the ribosomal subunits.


Structure of the nucleolus
Structure of the nucleolus
- The nucleolus is the largest sub-structure within the nucleus.
- The nucleolus is made of proteins, RNA and DNA.


Function of the nucleolus
Function of the nucleolus
- The main role of the nucleolus is to act as the site at which ribosomes are made.
- The nucleolus also has secondary roles, such as immobilizing proteins and forming signal recognition particles.
Mitochondria and Chloroplasts
Mitochondria and Chloroplasts
Mitochondria produce adenosine triphosphate (ATP) via aerobic respiration. Chloroplasts are plant cell organelles that carry out photosynthesis.


Structure of mitochondria
Structure of mitochondria
- Mitochondria are oval-shaped, double-membrane organelles that have their own ribosomes and DNA.
- Each membrane is a phospholipid bilayer embedded with proteins.
- The inner layer of the membrane has folds called cristae, this increases the surface area available for ATP synthesis.
- The area surrounded by the folds is called the mitochondrial matrix.
- The mitochondrial matrix contains enzymes used for respiration, such as those required for the Krebs cycle.


Function of mitochondria
Function of mitochondria
- Mitochondria make ATP via aerobic respiraton.
- Muscle cells have a very high concentration of mitochondria because they are highly active and need a lot of energy to keep the body moving.


Structure of chloroplasts
Structure of chloroplasts
- Chloroplasts have their own DNA, ribosomes and have inner and outer membranes.
- The space enclosed by the inner membrane contains a set of interconnected and stacked fluid-filled membrane sacs called thylakoids.
- Each stack of thylakoids is called a granum (plural = grana).
- Grana are linked by lamellae.
- Lamellae are flat, thin parts of thylakoid membrane.
- The fluid enclosed by the inner membrane that surrounds the grana is called the stroma.


Reactions of photosynthesis
Reactions of photosynthesis
- The light-dependent reaction of photosynthesis occurs in the grana. The thylakoid membrane contains chlorophyll to absorb light and the electron transport proteins required for photosynthesis.
- The light-independent, or carbon-fixation, reaction of photosynthesis occurs in the stroma.
- These reactions are covered in greater detail in the "cellular energetics" unit coming up.


Function of chloroplasts
Function of chloroplasts
- Photosynthesis is the series of reactions that use carbon dioxide, water and light energy to make glucose and oxygen.
- This process happens in chloroplasts and allows plants to make their own food (e.g. sugars).
- Chloroplasts are found in plant and algal cells but not in animal cells.
1Unity & Diversity - Molecules
1.1Water
1.2DNA Structure & Replication
1.3Transcription & Gene Expression
2Unity & Diversity - Cells
2.1The Origin of Cells
2.2Introduction to Cells
2.3Ultrastructure of Cells
2.4Cell Division
2.5Structure of DNA & RNA
2.6DNA Replication, Transcription & Translation
2.7Cell Respiration
2.8Photosynthesis
2.9Viruses
3Unity & Diversity - Organisms
3.1Diversity of Organisms
3.2Evidence for Evolution
4Unity & Diversity - Ecosystems
4.1Classification
4.3Evolution & Speciation
4.3.1Evidence for Evolution - Fossils & DNA
4.3.2Evidence for Evolution - Anatomy & Geography
4.3.3IB Multiple Choice - Evidence for Evolution
4.3.4Extended Response - DNA & Evolution
4.3.5Populations
4.3.6Mutations, Genetic Drift, & Gene Flow
4.3.7Speciation
4.3.8Rate of Speciation
4.3.9Allopatric & Sympatric Speciation
4.4Conservation of Biodiversity
5Form & Function - Molecules
6Form & Function - Cells
6.1Membranes & Membrane Transport
6.2Organelles & Compartmentalization
6.3Cell Specialization
7Form & Function - Organisms
7.2Transport
7.3Muscle & Motility
8Form & Function - Ecosystems
8.1Species, Communities & Ecosytems
8.3Carbon Cycle
9Interaction & Interdependence - Molecules
9.1Enzymes
9.2Metabolism
9.3Cell Respiration
10Interaction & Interdependence - Cells
10.1Chemical Signalling
10.2Neural Signalling
10.3Adaptation to Environment
10.4Ecological Niches
11Interaction & Interdependence - Organisms
11.1Integration of Body Systems
12Interaction & Interdependence - Ecosystems
12.1Populations & Communities
12.2Transfers of Energy & Matter
13Continuity & Change - Molecules
13.1DNA Replication
13.2Protein Synthesis
14Continuity & Change - Cells
15Continuity & Change - Organisms
15.1Inheritance
15.1.1Non-Nuclear Inheritance
15.1.2Linked Genes
15.1.3IB Multiple Choice - Non-Mendelian Genetics
15.1.4Extended Response - Inheritance
15.1.5Introduction to Non-Mendelian Inheritance
15.1.6Chi-Squared Test
15.1.7End of Topic Quiz - Inheritance
15.1.8Sex-Linked Genes
15.1.9Grade 4-5 (Scientific Practices) - Inheritance
16Continuity & Change - Ecosystems
16.1Natural Selection
16.2Stability & Change
Jump to other topics
1Unity & Diversity - Molecules
1.1Water
1.2DNA Structure & Replication
1.3Transcription & Gene Expression
2Unity & Diversity - Cells
2.1The Origin of Cells
2.2Introduction to Cells
2.3Ultrastructure of Cells
2.4Cell Division
2.5Structure of DNA & RNA
2.6DNA Replication, Transcription & Translation
2.7Cell Respiration
2.8Photosynthesis
2.9Viruses
3Unity & Diversity - Organisms
3.1Diversity of Organisms
3.2Evidence for Evolution
4Unity & Diversity - Ecosystems
4.1Classification
4.3Evolution & Speciation
4.3.1Evidence for Evolution - Fossils & DNA
4.3.2Evidence for Evolution - Anatomy & Geography
4.3.3IB Multiple Choice - Evidence for Evolution
4.3.4Extended Response - DNA & Evolution
4.3.5Populations
4.3.6Mutations, Genetic Drift, & Gene Flow
4.3.7Speciation
4.3.8Rate of Speciation
4.3.9Allopatric & Sympatric Speciation
4.4Conservation of Biodiversity
5Form & Function - Molecules
6Form & Function - Cells
6.1Membranes & Membrane Transport
6.2Organelles & Compartmentalization
6.3Cell Specialization
7Form & Function - Organisms
7.2Transport
7.3Muscle & Motility
8Form & Function - Ecosystems
8.1Species, Communities & Ecosytems
8.3Carbon Cycle
9Interaction & Interdependence - Molecules
9.1Enzymes
9.2Metabolism
9.3Cell Respiration
10Interaction & Interdependence - Cells
10.1Chemical Signalling
10.2Neural Signalling
10.3Adaptation to Environment
10.4Ecological Niches
11Interaction & Interdependence - Organisms
11.1Integration of Body Systems
12Interaction & Interdependence - Ecosystems
12.1Populations & Communities
12.2Transfers of Energy & Matter
13Continuity & Change - Molecules
13.1DNA Replication
13.2Protein Synthesis
14Continuity & Change - Cells
15Continuity & Change - Organisms
15.1Inheritance
15.1.1Non-Nuclear Inheritance
15.1.2Linked Genes
15.1.3IB Multiple Choice - Non-Mendelian Genetics
15.1.4Extended Response - Inheritance
15.1.5Introduction to Non-Mendelian Inheritance
15.1.6Chi-Squared Test
15.1.7End of Topic Quiz - Inheritance
15.1.8Sex-Linked Genes
15.1.9Grade 4-5 (Scientific Practices) - Inheritance
16Continuity & Change - Ecosystems
16.1Natural Selection
16.2Stability & Change
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books