9.3.2
Hubble's Law
Hubble's Law
Hubble's Law
Hubble investigated the relationship between the recession velocities of galaxies and their distance from the Milky Way.


Measuring distance
Measuring distance
- The hydrogen spectra of distant galaxies gave a measurement of how fast the galaxies were moving away from the Milky Way.
- The distance to the galaxies was measured by observation of the period of Cepheid variables as a standard candle.
- In more recent times, this has been superseded by the use of type 1a supernovae.


Hubble's graph
Hubble's graph
- When Hubble plotted a graph of velocity against distance, he found that there was a directly proportional relationship.
- The further away a galaxy is, the faster it is moving away from us.


Hubble's law
Hubble's law
- Hubble's law relates how fast a galaxy is moving away from us, v, to its distance from Earth, d:
- H is the Hubble constant. It is the gradient of the graph.
Hubble's Law and the Big Bang
Hubble's Law and the Big Bang
Hubble's discovery has some important implications.


Expanding universe
Expanding universe
- The consequence of this graph is profound.
- It is only explained by the expansion of the universe, as the galaxies furthest away are also the fastest moving.
- If the clock is run backwards, everything in the universe appears to have come from a single point.


Hubble constant
Hubble constant
- The gradient of this graph is known as the Hubble constant.
- It is an indicator of the age of the universe, assuming that the Hubble constant does not change.


Hubble constant 2
Hubble constant 2
- The current accepted value of the Hubble constant is 65 km s-1 Mpc-1.
- In SI units, it can be shown that this is 2.5 × 10-19 s-1.
- The age of the universe is therefore:
- Which gives 4.0 × 1018 s or 12.4 billion years.
- Remember this is only a rough estimate.


Correct predictions
Correct predictions
- If the universe came from a single point, then during the subsequent formation of atoms and expansion of the universe, a Cosmological Microwave Background Radiation (CMBR) should result.
- This was detected in 1965 by Penzias and Wilson.
- Furthermore, theory predicts that the ratio of hydrogen to helium should be about 3 to 1, which is largely borne out by observation.
1Measurements & Errors
2Particles & Radiation
2.1Particles
2.1.1Atomic Model
2.1.2Specific Charge, Protons & Neutron Numbers
2.1.3End of Topic Test - Atomic Model
2.1.4Isotopes
2.1.5Stable & Unstable Nuclei
2.1.6End of Topic Test - Isotopes & Nuclei
2.1.7A-A* (AO3/4) - Stable & Unstable Nuclei
2.1.8Particles, Antiparticles & Photons
2.1.9Particle Interactions
2.1.10Classification of Particles
2.1.11End of Topic Test - Particles & Interactions
2.1.12Quarks & Antiquarks
2.1.13Application of Conservation Laws
2.1.14End of Topic Test - Leptons & Quarks
2.1.15Exam-Style Question - Radioactive Decay
2.2Electromagnetic Radiation & Quantum Phenomena
3Waves
3.1Progressive & Stationary Waves
3.2Refraction, Diffraction & Interference
4Mechanics & Materials
4.1Force, Energy & Momentum
4.1.1Scalars & Vectors
4.1.2Vector Problems
4.1.3End of Topic Test - Scalars & Vectors
4.1.4Moments
4.1.5Centre of Mass
4.1.6End of Topic Test - Moments & Centre of Mass
4.1.7Motion in a Straight Line
4.1.8Graphs of Motion
4.1.9Bouncing Ball Example
4.1.10End of Topic Test - Motion in a Straight Line
4.1.11Acceleration Due to Gravity
4.1.12Projectile Motion
4.1.13Friction
4.1.14Terminal Speed
4.1.15End of Topic Test - Acceleration Due to Gravity
4.1.16Newton's Laws
4.1.17Momentum
4.1.18Momentum 2
4.1.19End of Topic Test - Newton's Laws & Momentum
4.1.20A-A* (AO3/4) - Newton's Third Law
4.1.21Work & Energy
4.1.22Power & Efficiency
4.1.23Conservation of Energy
4.1.24End of Topic Test - Work, Energy & Power
4.1.25Exam-Style Question - Forces
5Electricity
5.1Current Electricity
5.1.1Basics of Electricity
5.1.2Current-Voltage Characteristics
5.1.3End of Topic Test - Basics of Electricity
5.1.4Resistivity
5.1.5Superconductivity
5.1.6A-A* (AO3/4) - Superconductivity
5.1.7End of Topic Test - Resistivity & Superconductors
5.1.8Circuits
5.1.9Power and Conservation
5.1.10Potential Divider
5.1.11Emf & Internal Resistance
5.1.12End of Topic Test - Power & Potential
5.1.13Exam-Style Question - Resistance
6Further Mechanics & Thermal Physics (A2 only)
6.1Periodic Motion (A2 only)
6.2Thermal Physics (A2 only)
7Fields & Their Consequences (A2 only)
7.1Fields (A2 only)
7.2Gravitational Fields (A2 only)
7.3Electric Fields (A2 only)
7.4Capacitance (A2 only)
7.5Magnetic Fields (A2 only)
7.5.1Magnetic Flux Density
7.5.2End of Topic Test - Capacitance & Flux Density
7.5.3Moving Charges in a Magnetic Field
7.5.4Magnetic Flux & Flux Linkage
7.5.5Electromagnetic Induction
7.5.6Electromagnetic Induction 2
7.5.7Alternating Currents
7.5.8Operation of a Transformer
7.5.9Magnetic Flux Density
7.5.10End of Topic Test - Electromagnetic Induction
8Nuclear Physics (A2 only)
8.1Radioactivity (A2 only)
8.1.1Rutherford Scattering
8.1.2Alpha & Beta Radiation
8.1.3Gamma Radiation
8.1.4Radioactive Decay
8.1.5Half Life
8.1.6End of Topic Test - Radioactivity
8.1.7Nuclear Instability
8.1.8Nuclear Radius
8.1.9Mass & Energy
8.1.10Binding Energy
8.1.11Induced Fission
8.1.12Safety Aspects of Nuclear Reactors
8.1.13End of Topic Test - Nuclear Physics
8.1.14A-A* (AO3/4) - Nuclear Fusion
9Option: Astrophysics (A2 only)
9.1Telescopes (A2 only)
9.2Classification of Stars (A2 only)
9.3Cosmology (A2 only)
10Option: Medical Physics (A2 only)
10.1Physics of the Eye (A2 only)
10.2Physics of the Ear (A2 only)
10.3Biological Measurement (A2 only)
10.4Non-Ionising Imaging (A2 only)
10.5X-Ray Imaging (A2 only)
10.6Radionuclide Imaging & Therapy (A2 only)
11Option: Engineering Physics (A2 only)
11.1Rotational Dynamics (A2 only)
11.2Thermodynamics & Engines (A2 only)
12Option: Turning Points in Physics (A2 only)
12.1Discovery of the Electron (A2 only)
12.2Wave-Particle Duality (A2 only)
Jump to other topics
1Measurements & Errors
2Particles & Radiation
2.1Particles
2.1.1Atomic Model
2.1.2Specific Charge, Protons & Neutron Numbers
2.1.3End of Topic Test - Atomic Model
2.1.4Isotopes
2.1.5Stable & Unstable Nuclei
2.1.6End of Topic Test - Isotopes & Nuclei
2.1.7A-A* (AO3/4) - Stable & Unstable Nuclei
2.1.8Particles, Antiparticles & Photons
2.1.9Particle Interactions
2.1.10Classification of Particles
2.1.11End of Topic Test - Particles & Interactions
2.1.12Quarks & Antiquarks
2.1.13Application of Conservation Laws
2.1.14End of Topic Test - Leptons & Quarks
2.1.15Exam-Style Question - Radioactive Decay
2.2Electromagnetic Radiation & Quantum Phenomena
3Waves
3.1Progressive & Stationary Waves
3.2Refraction, Diffraction & Interference
4Mechanics & Materials
4.1Force, Energy & Momentum
4.1.1Scalars & Vectors
4.1.2Vector Problems
4.1.3End of Topic Test - Scalars & Vectors
4.1.4Moments
4.1.5Centre of Mass
4.1.6End of Topic Test - Moments & Centre of Mass
4.1.7Motion in a Straight Line
4.1.8Graphs of Motion
4.1.9Bouncing Ball Example
4.1.10End of Topic Test - Motion in a Straight Line
4.1.11Acceleration Due to Gravity
4.1.12Projectile Motion
4.1.13Friction
4.1.14Terminal Speed
4.1.15End of Topic Test - Acceleration Due to Gravity
4.1.16Newton's Laws
4.1.17Momentum
4.1.18Momentum 2
4.1.19End of Topic Test - Newton's Laws & Momentum
4.1.20A-A* (AO3/4) - Newton's Third Law
4.1.21Work & Energy
4.1.22Power & Efficiency
4.1.23Conservation of Energy
4.1.24End of Topic Test - Work, Energy & Power
4.1.25Exam-Style Question - Forces
5Electricity
5.1Current Electricity
5.1.1Basics of Electricity
5.1.2Current-Voltage Characteristics
5.1.3End of Topic Test - Basics of Electricity
5.1.4Resistivity
5.1.5Superconductivity
5.1.6A-A* (AO3/4) - Superconductivity
5.1.7End of Topic Test - Resistivity & Superconductors
5.1.8Circuits
5.1.9Power and Conservation
5.1.10Potential Divider
5.1.11Emf & Internal Resistance
5.1.12End of Topic Test - Power & Potential
5.1.13Exam-Style Question - Resistance
6Further Mechanics & Thermal Physics (A2 only)
6.1Periodic Motion (A2 only)
6.2Thermal Physics (A2 only)
7Fields & Their Consequences (A2 only)
7.1Fields (A2 only)
7.2Gravitational Fields (A2 only)
7.3Electric Fields (A2 only)
7.4Capacitance (A2 only)
7.5Magnetic Fields (A2 only)
7.5.1Magnetic Flux Density
7.5.2End of Topic Test - Capacitance & Flux Density
7.5.3Moving Charges in a Magnetic Field
7.5.4Magnetic Flux & Flux Linkage
7.5.5Electromagnetic Induction
7.5.6Electromagnetic Induction 2
7.5.7Alternating Currents
7.5.8Operation of a Transformer
7.5.9Magnetic Flux Density
7.5.10End of Topic Test - Electromagnetic Induction
8Nuclear Physics (A2 only)
8.1Radioactivity (A2 only)
8.1.1Rutherford Scattering
8.1.2Alpha & Beta Radiation
8.1.3Gamma Radiation
8.1.4Radioactive Decay
8.1.5Half Life
8.1.6End of Topic Test - Radioactivity
8.1.7Nuclear Instability
8.1.8Nuclear Radius
8.1.9Mass & Energy
8.1.10Binding Energy
8.1.11Induced Fission
8.1.12Safety Aspects of Nuclear Reactors
8.1.13End of Topic Test - Nuclear Physics
8.1.14A-A* (AO3/4) - Nuclear Fusion
9Option: Astrophysics (A2 only)
9.1Telescopes (A2 only)
9.2Classification of Stars (A2 only)
9.3Cosmology (A2 only)
10Option: Medical Physics (A2 only)
10.1Physics of the Eye (A2 only)
10.2Physics of the Ear (A2 only)
10.3Biological Measurement (A2 only)
10.4Non-Ionising Imaging (A2 only)
10.5X-Ray Imaging (A2 only)
10.6Radionuclide Imaging & Therapy (A2 only)
11Option: Engineering Physics (A2 only)
11.1Rotational Dynamics (A2 only)
11.2Thermodynamics & Engines (A2 only)
12Option: Turning Points in Physics (A2 only)
12.1Discovery of the Electron (A2 only)
12.2Wave-Particle Duality (A2 only)

Unlock your full potential with GoStudent tutoring
Affordable 1:1 tutoring from the comfort of your home
Tutors are matched to your specific learning needs
30+ school subjects covered