5.1.4
Resistivity
Resistivity
Resistivity
The resistivity of a material is a measure of how much resistance a material provides.
Resistance to motion
Resistance to motion
- Resistance depends on the material of which the object is composed.
- Different materials offer different resistances to the flow of charge.
- Resistivity is an intrinsic property of a material, independent of its shape or size.
Calculation
Calculation
- The equation for resistivity is:
- Resistivity = (resistance x area) ÷ length
- Where is the resistivity, A is the area, R is the resistance and L is the length of the wire.
Applications of Thermistors
Applications of Thermistors
Thermistors are electrical components which change their resistance based on their temperature. This means we can use thermistors in devices where outputs depend on temperature variation.
Types of thermistors
Types of thermistors
- Thermistors come in two varieties: positive temperature coefficient and negative temperature coefficient thermistors.
- You only need to focus on negative temperature coefficient thermistors (NTC).
NTC thermistors
NTC thermistors
- With negative temperature coefficient thermistors: the higher the temperature, the lower the resistance.
- The resistance is then a proxy (something used to reflect the value of a factor in a calculation) for the temperature of the thermistor.
Determining the Resistivity of a Wire
Determining the Resistivity of a Wire
We can perform the following experiment to determine the resistivity of a wire.
Equipment
Equipment
- First, determine the length of the wire (make sure the wire is straight) and the cross-sectional area using a micrometer screw gauge.
- The assumption with the micrometer screw gauge is that the wire's cross-sectional area is circular.
- Set up the wire with a flying lead that can be reattached at any arbitrary (random) point on the wire.
- Make sure that the current used is low otherwise the wire will heat up and the results will inflate the resistivity of the material.
Method
Method
- Record the resistance for various lengths of wire.
- The resistance can be determined by the ratio of observed potential difference to observed current.
- Plot resistance (y-axis) against the length of the wire (x-axis).
- Determine the gradient of the graph and multiply the gradient by the cross-sectional area to find the resistivity of the wire.
1Measurements & Errors
2Particles & Radiation
2.1Particles
2.1.1Atomic Model
2.1.2Specific Charge, Protons & Neutron Numbers
2.1.3End of Topic Test - Atomic Model
2.1.4Isotopes
2.1.5Stable & Unstable Nuclei
2.1.6End of Topic Test - Isotopes & Nuclei
2.1.7A-A* (AO3/4) - Stable & Unstable Nuclei
2.1.8Particles, Antiparticles & Photons
2.1.9Particle Interactions
2.1.10Classification of Particles
2.1.11End of Topic Test - Particles & Interactions
2.1.12Quarks & Antiquarks
2.1.13Application of Conservation Laws
2.1.14End of Topic Test - Leptons & Quarks
2.1.15Exam-Style Question - Radioactive Decay
2.2Electromagnetic Radiation & Quantum Phenomena
3Waves
3.1Progressive & Stationary Waves
3.2Refraction, Diffraction & Interference
4Mechanics & Materials
4.1Force, Energy & Momentum
4.1.1Scalars & Vectors
4.1.2Vector Problems
4.1.3End of Topic Test - Scalars & Vectors
4.1.4Moments
4.1.5Centre of Mass
4.1.6End of Topic Test - Moments & Centre of Mass
4.1.7Motion in a Straight Line
4.1.8Graphs of Motion
4.1.9Bouncing Ball Example
4.1.10End of Topic Test - Motion in a Straight Line
4.1.11Acceleration Due to Gravity
4.1.12Projectile Motion
4.1.13Friction
4.1.14Terminal Speed
4.1.15End of Topic Test - Acceleration Due to Gravity
4.1.16Newton's Laws
4.1.17Momentum
4.1.18Momentum 2
4.1.19End of Topic Test - Newton's Laws & Momentum
4.1.20A-A* (AO3/4) - Newton's Third Law
4.1.21Work & Energy
4.1.22Power & Efficiency
4.1.23Conservation of Energy
4.1.24End of Topic Test - Work, Energy & Power
4.1.25Exam-Style Question - Forces
5Electricity
5.1Current Electricity
5.1.1Basics of Electricity
5.1.2Current-Voltage Characteristics
5.1.3End of Topic Test - Basics of Electricity
5.1.4Resistivity
5.1.5Superconductivity
5.1.6A-A* (AO3/4) - Superconductivity
5.1.7End of Topic Test - Resistivity & Superconductors
5.1.8Circuits
5.1.9Power and Conservation
5.1.10Potential Divider
5.1.11Emf & Internal Resistance
5.1.12End of Topic Test - Power & Potential
5.1.13Exam-Style Question - Resistance
6Further Mechanics & Thermal Physics (A2 only)
6.1Periodic Motion (A2 only)
6.2Thermal Physics (A2 only)
7Fields & Their Consequences (A2 only)
7.1Fields (A2 only)
7.2Gravitational Fields (A2 only)
7.3Electric Fields (A2 only)
7.4Capacitance (A2 only)
7.5Magnetic Fields (A2 only)
7.5.1Magnetic Flux Density
7.5.2End of Topic Test - Capacitance & Flux Density
7.5.3Moving Charges in a Magnetic Field
7.5.4Magnetic Flux & Flux Linkage
7.5.5Electromagnetic Induction
7.5.6Electromagnetic Induction 2
7.5.7Alternating Currents
7.5.8Operation of a Transformer
7.5.9Magnetic Flux Density
7.5.10End of Topic Test - Electromagnetic Induction
8Nuclear Physics (A2 only)
8.1Radioactivity (A2 only)
8.1.1Rutherford Scattering
8.1.2Alpha & Beta Radiation
8.1.3Gamma Radiation
8.1.4Radioactive Decay
8.1.5Half Life
8.1.6End of Topic Test - Radioactivity
8.1.7Nuclear Instability
8.1.8Nuclear Radius
8.1.9Mass & Energy
8.1.10Binding Energy
8.1.11Induced Fission
8.1.12Safety Aspects of Nuclear Reactors
8.1.13End of Topic Test - Nuclear Physics
8.1.14A-A* (AO3/4) - Nuclear Fusion
9Option: Astrophysics (A2 only)
9.1Telescopes (A2 only)
9.2Classification of Stars (A2 only)
9.3Cosmology (A2 only)
10Option: Medical Physics (A2 only)
10.1Physics of the Eye (A2 only)
10.2Physics of the Ear (A2 only)
10.3Biological Measurement (A2 only)
10.4Non-Ionising Imaging (A2 only)
10.5X-Ray Imaging (A2 only)
10.6Radionuclide Imaging & Therapy (A2 only)
11Option: Engineering Physics (A2 only)
11.1Rotational Dynamics (A2 only)
11.2Thermodynamics & Engines (A2 only)
12Option: Turning Points in Physics (A2 only)
12.1Discovery of the Electron (A2 only)
12.2Wave-Particle Duality (A2 only)
Jump to other topics
1Measurements & Errors
2Particles & Radiation
2.1Particles
2.1.1Atomic Model
2.1.2Specific Charge, Protons & Neutron Numbers
2.1.3End of Topic Test - Atomic Model
2.1.4Isotopes
2.1.5Stable & Unstable Nuclei
2.1.6End of Topic Test - Isotopes & Nuclei
2.1.7A-A* (AO3/4) - Stable & Unstable Nuclei
2.1.8Particles, Antiparticles & Photons
2.1.9Particle Interactions
2.1.10Classification of Particles
2.1.11End of Topic Test - Particles & Interactions
2.1.12Quarks & Antiquarks
2.1.13Application of Conservation Laws
2.1.14End of Topic Test - Leptons & Quarks
2.1.15Exam-Style Question - Radioactive Decay
2.2Electromagnetic Radiation & Quantum Phenomena
3Waves
3.1Progressive & Stationary Waves
3.2Refraction, Diffraction & Interference
4Mechanics & Materials
4.1Force, Energy & Momentum
4.1.1Scalars & Vectors
4.1.2Vector Problems
4.1.3End of Topic Test - Scalars & Vectors
4.1.4Moments
4.1.5Centre of Mass
4.1.6End of Topic Test - Moments & Centre of Mass
4.1.7Motion in a Straight Line
4.1.8Graphs of Motion
4.1.9Bouncing Ball Example
4.1.10End of Topic Test - Motion in a Straight Line
4.1.11Acceleration Due to Gravity
4.1.12Projectile Motion
4.1.13Friction
4.1.14Terminal Speed
4.1.15End of Topic Test - Acceleration Due to Gravity
4.1.16Newton's Laws
4.1.17Momentum
4.1.18Momentum 2
4.1.19End of Topic Test - Newton's Laws & Momentum
4.1.20A-A* (AO3/4) - Newton's Third Law
4.1.21Work & Energy
4.1.22Power & Efficiency
4.1.23Conservation of Energy
4.1.24End of Topic Test - Work, Energy & Power
4.1.25Exam-Style Question - Forces
5Electricity
5.1Current Electricity
5.1.1Basics of Electricity
5.1.2Current-Voltage Characteristics
5.1.3End of Topic Test - Basics of Electricity
5.1.4Resistivity
5.1.5Superconductivity
5.1.6A-A* (AO3/4) - Superconductivity
5.1.7End of Topic Test - Resistivity & Superconductors
5.1.8Circuits
5.1.9Power and Conservation
5.1.10Potential Divider
5.1.11Emf & Internal Resistance
5.1.12End of Topic Test - Power & Potential
5.1.13Exam-Style Question - Resistance
6Further Mechanics & Thermal Physics (A2 only)
6.1Periodic Motion (A2 only)
6.2Thermal Physics (A2 only)
7Fields & Their Consequences (A2 only)
7.1Fields (A2 only)
7.2Gravitational Fields (A2 only)
7.3Electric Fields (A2 only)
7.4Capacitance (A2 only)
7.5Magnetic Fields (A2 only)
7.5.1Magnetic Flux Density
7.5.2End of Topic Test - Capacitance & Flux Density
7.5.3Moving Charges in a Magnetic Field
7.5.4Magnetic Flux & Flux Linkage
7.5.5Electromagnetic Induction
7.5.6Electromagnetic Induction 2
7.5.7Alternating Currents
7.5.8Operation of a Transformer
7.5.9Magnetic Flux Density
7.5.10End of Topic Test - Electromagnetic Induction
8Nuclear Physics (A2 only)
8.1Radioactivity (A2 only)
8.1.1Rutherford Scattering
8.1.2Alpha & Beta Radiation
8.1.3Gamma Radiation
8.1.4Radioactive Decay
8.1.5Half Life
8.1.6End of Topic Test - Radioactivity
8.1.7Nuclear Instability
8.1.8Nuclear Radius
8.1.9Mass & Energy
8.1.10Binding Energy
8.1.11Induced Fission
8.1.12Safety Aspects of Nuclear Reactors
8.1.13End of Topic Test - Nuclear Physics
8.1.14A-A* (AO3/4) - Nuclear Fusion
9Option: Astrophysics (A2 only)
9.1Telescopes (A2 only)
9.2Classification of Stars (A2 only)
9.3Cosmology (A2 only)
10Option: Medical Physics (A2 only)
10.1Physics of the Eye (A2 only)
10.2Physics of the Ear (A2 only)
10.3Biological Measurement (A2 only)
10.4Non-Ionising Imaging (A2 only)
10.5X-Ray Imaging (A2 only)
10.6Radionuclide Imaging & Therapy (A2 only)
11Option: Engineering Physics (A2 only)
11.1Rotational Dynamics (A2 only)
11.2Thermodynamics & Engines (A2 only)
12Option: Turning Points in Physics (A2 only)
12.1Discovery of the Electron (A2 only)
12.2Wave-Particle Duality (A2 only)
Unlock your full potential with GoStudent tutoring
Affordable 1:1 tutoring from the comfort of your home
Tutors are matched to your specific learning needs
30+ school subjects covered