2.4.1
Electrochemical Cells (A2 Only)
Electrochemical Cells
Electrochemical Cells
An electrochemical cell can be used to make an electrical current.
How is a current made?
How is a current made?
- There are two processes happening in a cell: oxidation and reduction.
- One metal is oxidised and gives up electrons.
- In the other side of the cell, the other metal accepts these electrons.
- The electrons travel from one side of the cell to the other via the wire, which is the electrical current.
Electrodes
Electrodes
- Often, you’ll use an electrode that is made of the same metals that are being oxidised or reduced.
- But you don’t have to, and if one of your equations doesn’t involve a solid being formed or lost, you’ll need to use a different metal.
- In these circumstances, we use a platinum electrode because they are inert and so don’t tend to react with anything.
OIL RIG
OIL RIG
- OIL RIG is a useful mnemonic for remembering the difference between oxidation and reduction:
- Oxidation Is Loss (of electrons).
- Reduction Is Gain (of electrons).
Half Equations and Reduction Potentials
Half Equations and Reduction Potentials
Half equations show redox potentials.
Half equations
Half equations
- An ionic half equation shows either reduction or oxidation.
- E.g. O2 + 4e- 2O2-
- This is the ionic half equation for the reduction of O2 to 2O2-
- E.g. O2 + 4e- 2O2-
- If you have ionic half equations for a reduction process and an oxidation process, you can add the two to make a full balanced equation.
Reduction potentials
Reduction potentials
- By convention, we write all half equations in electrochemistry as reduction potentials.
- This means that we write each equation with the electrons on the left-hand side and show the species gaining electrons.
- We can do this because each reaction is reversible.
The direction of change
The direction of change
- Every reduction potential will have a quoted value of Eθ.
- This is measured in volts.
- A positive Eθ means the reaction is favourable compared to the reduction of hydrogen ions.
- A negative Eθ means the reaction is not favourable compared to the reduction of hydrogen ions.
The Standard Hydrogen Electrode
The Standard Hydrogen Electrode
The standard hydrogen electrode is used to measure reduction potentials.
The standard hydrogen electrode
The standard hydrogen electrode
- The important features of the standard hydrogen electrode are:
- A pressure of H2(g) at 100 kPa.
- An H+(aq) concentration of 1 moldm-3.
- A temperature of 298 K.
Why do we need it?
Why do we need it?
- We can only measure an electrical potential if a current can run. We need one species to accept electrons and one to donate electrons.
- This means that we can never measure an electrode potential of a half-equation by itself.
- We have to measure the electrode potential relative to the electrode potential of something else.
- We define the electrode potential of the standard hydrogen electrode to have Eθ = 0 V.
- Everything else is measured relative to this.
Standard electrode potentials
Standard electrode potentials
- The θ in Eθ marks that the electrode potential is measured under standard conditions, which are:
- 298 K temperature.
- 100 kPa pressure.
- A concentration of 1 moldm-3 for any solution.
- It’s important to use standard conditions for a reference because changing any of these factors would change the potential and give you a different answer.
1Physical Chemistry
1.1Atomic Structure
1.1.1Fundamental Particles
1.1.2Isotopes & Mass Number
1.1.3Mass Spectrometry
1.1.4Electron Shells, Sub-Shells & Orbitals
1.1.5Electron Configuration
1.1.6Ionisation Energy
1.1.7Factors Affecting Ionisation Energies
1.1.8Trends of Ionisation
1.1.9Specific Impacts on Ionisation Energies
1.1.10End of Topic Test - Atomic Structure
1.1.11A-A* (AO3/4) - Atomic Structure
1.2Amount of Substance
1.3Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Carbon Structures
1.3.4Metallic Bonding
1.3.5Physical Properties
1.3.6Shapes of Molecules
1.3.7Polarity
1.3.8Intermolecular Forces
1.3.9Intermolecular Forces 2
1.3.10End of Topic Test - Bonding
1.3.11Exam-Style Question - Shape of Molecules
1.3.12A-A* (AO3/4) - Bonding
1.4Energetics
1.5Kinetics
1.6Equilibria
2Physical Chemistry 2 (A2 Only)
2.1Thermodynamics (A2 Only)
2.2Rate Equations (A2 Only)
2.3The Equilibrium Constant Kp (A2 Only)
2.4Electrochemical Cells (A2 Only)
2.5Acids & Bases (A2 Only)
2.5.1Brønsted-Lowry Acids & Bases (A2 Only)
2.5.2pH (A2 Only)
2.5.3The Ionic Product of Water (A2 Only)
2.5.4Weak Acids & Bases (A2 Only)
2.5.5pH Curves & Titrations (A2 Only)
2.5.6pH Curves & Titrations 2 (A2 Only)
2.5.7Buffer Solutions (A2 Only)
2.5.8End of Topic Test - Acids & Bases
2.5.9Exam-Style Question - Weak Acids
2.5.10A-A* (AO3/4) - Acids & Bases
3Inorganic Chemistry
3.1Periodicity & Trends
4Inorganic Chemistry 2 (A2 Only)
4.1Period 3 (A2 Only)
4.2Transition Metals (A2 Only)
4.2.1General Properties (A2 Only)
4.2.2Substitution Reactions (A2 Only)
4.2.3Shapes of Complex Ions (A2 Only)
4.2.4Colours of Ions (A2 Only)
4.2.5Variable Oxidation States (A2 Only)
4.2.6Titrations (A2 Only)
4.2.7Homogeneous Catalysts (A2 Only)
4.2.8Heterogeneous Catalysts (A2 Only)
4.2.9End of Topic Test - Transition Metals
4.2.10A-A* (AO3/4) - Transition Metals
4.3Reactions of Ions in Aqueous Solutions (A2 Only)
5Organic Chemistry 1
5.1Introduction
5.2Alkanes
5.3Halogenoalkanes
5.4Alkenes
5.5Alcohols
5.6Organic Analysis
5.7A-A* (AO3/4) - Organic 1
6Organic Chemistry 2 (A2 Only)
6.1Optical Isomerism (A2 Only)
6.2Aldehydes & Ketones (A2 Only)
6.3Carboxylic Acids & Esters (A2 Only)
6.4Aromatic Chemistry (A2 Only)
6.5Amines (A2 Only)
6.6Polymers (A2 Only)
6.7Biological Organic (A2 Only)
6.8Organic Synthesis (A2 Only)
6.9NMR Spectroscopy (A2 Only)
6.10Chromatography (A2 Only)
6.11A-A* (AO3/4) - Organic 2
Jump to other topics
1Physical Chemistry
1.1Atomic Structure
1.1.1Fundamental Particles
1.1.2Isotopes & Mass Number
1.1.3Mass Spectrometry
1.1.4Electron Shells, Sub-Shells & Orbitals
1.1.5Electron Configuration
1.1.6Ionisation Energy
1.1.7Factors Affecting Ionisation Energies
1.1.8Trends of Ionisation
1.1.9Specific Impacts on Ionisation Energies
1.1.10End of Topic Test - Atomic Structure
1.1.11A-A* (AO3/4) - Atomic Structure
1.2Amount of Substance
1.3Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Carbon Structures
1.3.4Metallic Bonding
1.3.5Physical Properties
1.3.6Shapes of Molecules
1.3.7Polarity
1.3.8Intermolecular Forces
1.3.9Intermolecular Forces 2
1.3.10End of Topic Test - Bonding
1.3.11Exam-Style Question - Shape of Molecules
1.3.12A-A* (AO3/4) - Bonding
1.4Energetics
1.5Kinetics
1.6Equilibria
2Physical Chemistry 2 (A2 Only)
2.1Thermodynamics (A2 Only)
2.2Rate Equations (A2 Only)
2.3The Equilibrium Constant Kp (A2 Only)
2.4Electrochemical Cells (A2 Only)
2.5Acids & Bases (A2 Only)
2.5.1Brønsted-Lowry Acids & Bases (A2 Only)
2.5.2pH (A2 Only)
2.5.3The Ionic Product of Water (A2 Only)
2.5.4Weak Acids & Bases (A2 Only)
2.5.5pH Curves & Titrations (A2 Only)
2.5.6pH Curves & Titrations 2 (A2 Only)
2.5.7Buffer Solutions (A2 Only)
2.5.8End of Topic Test - Acids & Bases
2.5.9Exam-Style Question - Weak Acids
2.5.10A-A* (AO3/4) - Acids & Bases
3Inorganic Chemistry
3.1Periodicity & Trends
4Inorganic Chemistry 2 (A2 Only)
4.1Period 3 (A2 Only)
4.2Transition Metals (A2 Only)
4.2.1General Properties (A2 Only)
4.2.2Substitution Reactions (A2 Only)
4.2.3Shapes of Complex Ions (A2 Only)
4.2.4Colours of Ions (A2 Only)
4.2.5Variable Oxidation States (A2 Only)
4.2.6Titrations (A2 Only)
4.2.7Homogeneous Catalysts (A2 Only)
4.2.8Heterogeneous Catalysts (A2 Only)
4.2.9End of Topic Test - Transition Metals
4.2.10A-A* (AO3/4) - Transition Metals
4.3Reactions of Ions in Aqueous Solutions (A2 Only)
5Organic Chemistry 1
5.1Introduction
5.2Alkanes
5.3Halogenoalkanes
5.4Alkenes
5.5Alcohols
5.6Organic Analysis
5.7A-A* (AO3/4) - Organic 1
6Organic Chemistry 2 (A2 Only)
6.1Optical Isomerism (A2 Only)
6.2Aldehydes & Ketones (A2 Only)
6.3Carboxylic Acids & Esters (A2 Only)
6.4Aromatic Chemistry (A2 Only)
6.5Amines (A2 Only)
6.6Polymers (A2 Only)
6.7Biological Organic (A2 Only)
6.8Organic Synthesis (A2 Only)
6.9NMR Spectroscopy (A2 Only)
6.10Chromatography (A2 Only)
6.11A-A* (AO3/4) - Organic 2
Unlock your full potential with GoStudent tutoring
Affordable 1:1 tutoring from the comfort of your home
Tutors are matched to your specific learning needs
30+ school subjects covered