3.2.2
Descriptive Statistics
Descriptive Statistics
Descriptive Statistics
The mean, median, and mode are measures of central tendency and provide an average figure from a set of data. The range and standard deviation are measures of dispersion and show the spread of data.


Central tendency
Central tendency
- There are three key measures of central tendency:
- The mean is calculated by adding together every score from the data set, and dividing by the number of scores.
- The median is the midpoint of the scores, when placed in numerical order from low to high. If there is an even number, the median is calculated by finding the mean of the middle two scores.
- The mode is the most common score. Sometimes there is no mode because no score appears more than once, or there could be two or more modes.


Measures of dispersion
Measures of dispersion
- Measures of dispersion provide an idea of how spread out a set of scores are.
- For example, the data 10,20,30 have the same mean and median as 19,20,21, but the latter are less spread out.


Range and standard deviation
Range and standard deviation
- There are two key measures of dispersion:
- The range is calculated by subtracting the lowest score from the highest score.
- The standard deviation is carried out following a simple formula, and shows the typical amount by which scores differ from the mean.


Power of statistics
Power of statistics
- The mean and standard deviation are more powerful statistics, as they take every score into account.
- But the other statistics are also useful, especially when describing skewed sets of data.
Percentages
Percentages
Percentages are a useful form of data handling in psychology. They are widely used to summarise the data from self-report methods, and can make it easier to compare scores.


Standardised scores
Standardised scores
- Percentages are standardised scores, converting any fraction or test score into the equivalent score out of a hundred.
- With any percentage, the number 100 represents the whole or maximum, and the percentage represents the fraction of that whole or maximum.


Calculation
Calculation
- Percentages are calculated from a fraction by dividing the smaller number by the larger number, and then multiplying the result by 100.


Uses of percentage
Uses of percentage
- A percentage can be a useful way of summarising the results of self-report methods such as a survey.
- For example, the percentage of people who strongly agreed with a statement can be calculated.


Easy comparison
Easy comparison
- Percentages also allow standardisation of scores to make them easier to compare.
- For example, when comparing the number of people who have depression from two differently-sized groups of participants.
Correlation
Correlation
Correlation is a statistical technique which shows how closely linked two sets of scores are.


Correlations
Correlations
- Correlation is a statistical technique which allows researchers to compare two sets of scores to see whether two variables are linked.
- For example, they could compare scores on a school exam with the number of hours that students had spent studying.


Positive vs negative
Positive vs negative
- A positive correlation is where the scores rise and fall together. As one variable rises, so does the other.
- A negative correlation is where the scores rise and fall in opposite directions. As one variable rises, the other falls.


Zero correlation
Zero correlation
- Sometimes, there is a zero correlation.
- This is where there is simply no statistical link at all between the variables - the scores are not connected in any way.


Strength of correlation
Strength of correlation
- Both positive and negative correlation can be weak or strong.
- A strong correlation is where the scores rise and fall very closely, while a weak correlation suggests a much more distant relationship between the variables (for example a large rise in one might link to a very small rise in the other).


Correlation vs causation
Correlation vs causation
- Researchers must be careful not to conclude that a strong correlation means that one variable is having an effect on the other.
- This could be the case, but it can’t be concluded from the correlation alone - further evidence would be needed.
1Principles of Science I
1.1Structure & Bonding
1.1.1Atomic Model
1.1.2Electron Shells, Sub-Shells & Orbitals
1.1.3Ionic Bonding
1.1.4Representing Ionic Bonds
1.1.5Covalent Bonding
1.1.6Representing Covalent Bonds
1.1.7Metallic Bonding
1.1.8Intermolecular Forces
1.1.9Intermolecular Forces 2
1.1.10End of Topic Test - Bonding
1.1.11Relative Masses
1.1.12The Mole
1.1.13Molar Calculations
1.1.14Molar Calculations 2
1.1.15Empirical & Molecular Formulae
1.1.16Balanced Equations
1.1.17Percentage Yield
1.1.18End of Topic Test - Amount of Substance
1.2Properties of Substances
1.2.1The Periodic Table
1.2.2Ionisation Energy
1.2.3Factors Affecting Ionisation Energies
1.2.4Trends of Ionisation
1.2.5Trends in the Periodic Table
1.2.6Polarity
1.2.7Metals & Non-Metals
1.2.8Alkali Metals
1.2.9Alkaline Earth Metals
1.2.10Reactivity of Alkaline Earth Metals
1.2.11Redox
1.2.12Transition Metals
1.2.13Redox Reactions of Transition Metals
1.3Cell Structure & Function
1.4Cell Specialisation
1.5Tissue Structure & Function
1.5.1Human Gas Exchange
1.5.2Blood Vessels
1.5.3Atherosclerosis
1.5.4Skeletal Muscle
1.5.5Slow & Fast Twitch Fibres
1.5.6Neurones
1.5.7Speed of Transmission
1.5.8Action Potentials
1.5.9End of Topic Test - Neurones & Action Potentials
1.5.10Synapses
1.5.11Types of Synapse
1.5.12Medical Application
1.5.13End of Topic Test - Synapses
1.5.14Chemical Brain Imbalances
1.5.15Effect of Drugs on the Brain
1.6Working with Waves
1.7Waves in Communication
2Practical Scientific Procedures and Techniques
3Science Investigation Skills
3.1Scientific Processes
3.2Data Handling & Analysis
3.3Enzymes in Action
3.4Diffusion
3.5Plants & Their Environment
3.6Energy Content in Fuels
4Principles of Science II
4.1Extracting Elements
4.2Relating Properties to use of Substances
4.3Organic Chemistry
4.4Energy Changes in Industry
4.5The Circulatory System
4.5.1The Circulatory System
4.5.2Blood Vessels
4.5.3Blood Transfusion & the ABO Rhesus System
4.5.4The Heart
4.5.5The Cardiac Cycle
4.5.6Cardiac Output
4.5.7Coordination of Heart Action
4.5.8Heart Dissection
4.5.9Controlling Heart Rate
4.5.10Electrocardiograms
4.5.11Cardiovascular Disease
4.5.12Investigating Heart Rates
4.6Ventilation & Gas Exchange
4.7Urinary System
4.9Thermal Physics
4.9.1Power & Efficiency
4.9.2Work & Energy
4.9.3Conservation of Energy
4.9.4Pressure
4.9.5First Law of Thermodynamics
4.9.6Second Law of Thermodynamics
4.9.7Heat Engines, Heat Pumps & Refrigerators
4.9.8Non-Flow Processes
4.9.9p-V Diagrams
4.9.10Ideal Gases
4.9.11Ideal Gases 2
4.9.12Thermal Energy Transfer
4.9.13Thermal Energy Transfer Experiments
4.10Materials
5Contemporary Issues in Science
5.1Contemporary Issues in Science
5.2Analysing Scientific Information
Jump to other topics
1Principles of Science I
1.1Structure & Bonding
1.1.1Atomic Model
1.1.2Electron Shells, Sub-Shells & Orbitals
1.1.3Ionic Bonding
1.1.4Representing Ionic Bonds
1.1.5Covalent Bonding
1.1.6Representing Covalent Bonds
1.1.7Metallic Bonding
1.1.8Intermolecular Forces
1.1.9Intermolecular Forces 2
1.1.10End of Topic Test - Bonding
1.1.11Relative Masses
1.1.12The Mole
1.1.13Molar Calculations
1.1.14Molar Calculations 2
1.1.15Empirical & Molecular Formulae
1.1.16Balanced Equations
1.1.17Percentage Yield
1.1.18End of Topic Test - Amount of Substance
1.2Properties of Substances
1.2.1The Periodic Table
1.2.2Ionisation Energy
1.2.3Factors Affecting Ionisation Energies
1.2.4Trends of Ionisation
1.2.5Trends in the Periodic Table
1.2.6Polarity
1.2.7Metals & Non-Metals
1.2.8Alkali Metals
1.2.9Alkaline Earth Metals
1.2.10Reactivity of Alkaline Earth Metals
1.2.11Redox
1.2.12Transition Metals
1.2.13Redox Reactions of Transition Metals
1.3Cell Structure & Function
1.4Cell Specialisation
1.5Tissue Structure & Function
1.5.1Human Gas Exchange
1.5.2Blood Vessels
1.5.3Atherosclerosis
1.5.4Skeletal Muscle
1.5.5Slow & Fast Twitch Fibres
1.5.6Neurones
1.5.7Speed of Transmission
1.5.8Action Potentials
1.5.9End of Topic Test - Neurones & Action Potentials
1.5.10Synapses
1.5.11Types of Synapse
1.5.12Medical Application
1.5.13End of Topic Test - Synapses
1.5.14Chemical Brain Imbalances
1.5.15Effect of Drugs on the Brain
1.6Working with Waves
1.7Waves in Communication
2Practical Scientific Procedures and Techniques
3Science Investigation Skills
3.1Scientific Processes
3.2Data Handling & Analysis
3.3Enzymes in Action
3.4Diffusion
3.5Plants & Their Environment
3.6Energy Content in Fuels
4Principles of Science II
4.1Extracting Elements
4.2Relating Properties to use of Substances
4.3Organic Chemistry
4.4Energy Changes in Industry
4.5The Circulatory System
4.5.1The Circulatory System
4.5.2Blood Vessels
4.5.3Blood Transfusion & the ABO Rhesus System
4.5.4The Heart
4.5.5The Cardiac Cycle
4.5.6Cardiac Output
4.5.7Coordination of Heart Action
4.5.8Heart Dissection
4.5.9Controlling Heart Rate
4.5.10Electrocardiograms
4.5.11Cardiovascular Disease
4.5.12Investigating Heart Rates
4.6Ventilation & Gas Exchange
4.7Urinary System
4.9Thermal Physics
4.9.1Power & Efficiency
4.9.2Work & Energy
4.9.3Conservation of Energy
4.9.4Pressure
4.9.5First Law of Thermodynamics
4.9.6Second Law of Thermodynamics
4.9.7Heat Engines, Heat Pumps & Refrigerators
4.9.8Non-Flow Processes
4.9.9p-V Diagrams
4.9.10Ideal Gases
4.9.11Ideal Gases 2
4.9.12Thermal Energy Transfer
4.9.13Thermal Energy Transfer Experiments
4.10Materials
5Contemporary Issues in Science
5.1Contemporary Issues in Science
5.2Analysing Scientific Information
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books