1.3.3
Organelles of Eukaryotic Cells
Cell-Surface Membranes and Cytoplasm
Cell-Surface Membranes and Cytoplasm
Eukaryotic cells have a cell-surface (plasma) membrane that separates the inside of the cell from its environment.


Structure of the plasma membrane
Structure of the plasma membrane
- The plasma membrane is made from a phospholipid bilayer.
- A phospholipid is a lipid molecule with glycerol, two fatty acid chains, and a phosphate-containing group.
- Plasma membranes have proteins and cholesterol embedded in them.
- These proteins can act as receptors. This means that the cell can respond to the external environment of the cell.


Function of the plasma membrane
Function of the plasma membrane
- The plasma membrane controls the passage of organic molecules, ions, water, and oxygen into and out of the cell.
- Waste products (e.g. carbon dioxide and ammonia) leave the cell by passing through the plasma membrane.


Structure of the cytoplasm
Structure of the cytoplasm
- Cytoplasm is made up of organelles suspended in the gel-like cytosol.
- 70% of the cytoplasm is made up of water.
- The cytoplasm also contains proteins, sugars, ions and fatty acids.


Functions of the cytoplasm
Functions of the cytoplasm
- Many metabolic reactions take place in the cytoplasm.
- Different organelles perform specific functions within the cytoplasm.
- It is important to remember that organelles are parts of a cell.
- Organelles are NOT cells even though they often surrounded by membranes.
The Nucleus
The Nucleus
The nucleus is a big organelle that contains the cell’s DNA. It is surrounded by a nuclear envelope.


Structure of the nuclear envelope
Structure of the nuclear envelope
- The nuclear envelope is a double-membrane structure that has a number of pores.
- Both the inner and outer membranes of the nuclear envelope are phospholipid bilayers.


Function of the nuclear envelope
Function of the nuclear envelope
- The pores in the nuclear envelope control the passage of ions, molecules and RNA between the nucleoplasm and cytoplasm.


Structure of the nucleus
Structure of the nucleus
- The nucleoplasm is the semi-solid fluid inside the nucleus, where we find the chromatin and the nucleolus.
- In eukaryotes, the nucleus contains linear chromosomes that are made up of DNA.
- There is an area within the nucleus called the nucleolus (plural = nucleoli).


Function of the nucleus
Function of the nucleus
- The nucleus controls the actions of the cell.
- DNA in the nucleus contains instructions for the synthesis of proteins.
- Ribosomal RNA is joined together with associated proteins in the nucleolus to assemble the ribosomal subunits.
Mitochondria and Chloroplasts
Mitochondria and Chloroplasts
Mitochondria produce adenosine triphosphate (ATP) via aerobic respiration. Chloroplasts are plant cell organelles that carry out photosynthesis.


Structure of mitochondria
Structure of mitochondria
- Mitochondria are oval-shaped, double-membrane organelles that have their own ribosomes and DNA.
- Each membrane is a phospholipid bilayer embedded with proteins.
- The inner layer of the membrane has folds called cristae.
- The area surrounded by the folds is called the mitochondrial matrix.
- The mitochondrial matrix contains enzymes used for respiration.


Function of mitochondria
Function of mitochondria
- Mitochondria make ATP via aerobic respiration.
- Muscle cells have a very high concentration of mitochondria because they are highly active and need a lot of energy to keep the body moving.


Structure of chloroplasts
Structure of chloroplasts
- Chloroplasts have their own DNA, ribosomes and have inner and outer membranes.
- The space enclosed by the inner membrane contains a set of interconnected and stacked fluid-filled membrane sacs called thylakoids.
- Each stack of thylakoids is called a granum (plural = grana).
- Grana are linked by lamellae.
- Lamellae are flat, thin parts of thylakoid membrane.
- The fluid enclosed by the inner membrane that surrounds the grana is called the stroma.


Function of chloroplasts
Function of chloroplasts
- Photosynthesis is the series of reactions that use carbon dioxide, water and light energy to make glucose and oxygen.
- This process happens in chloroplasts and allows plants to make their own food (e.g. sugars).
- Chloroplasts are found in plant and algal cells but not in animal or fungal cells.
1Principles of Science I
1.1Structure & Bonding
1.1.1Atomic Model
1.1.2Electron Shells, Sub-Shells & Orbitals
1.1.3Ionic Bonding
1.1.4Representing Ionic Bonds
1.1.5Covalent Bonding
1.1.6Representing Covalent Bonds
1.1.7Metallic Bonding
1.1.8Intermolecular Forces
1.1.9Intermolecular Forces 2
1.1.10End of Topic Test - Bonding
1.1.11Relative Masses
1.1.12The Mole
1.1.13Molar Calculations
1.1.14Molar Calculations 2
1.1.15Empirical & Molecular Formulae
1.1.16Balanced Equations
1.1.17Percentage Yield
1.1.18End of Topic Test - Amount of Substance
1.2Properties of Substances
1.2.1The Periodic Table
1.2.2Ionisation Energy
1.2.3Factors Affecting Ionisation Energies
1.2.4Trends of Ionisation
1.2.5Trends in the Periodic Table
1.2.6Polarity
1.2.7Metals & Non-Metals
1.2.8Alkali Metals
1.2.9Alkaline Earth Metals
1.2.10Reactivity of Alkaline Earth Metals
1.2.11Redox
1.2.12Transition Metals
1.2.13Redox Reactions of Transition Metals
1.3Cell Structure & Function
1.4Cell Specialisation
1.5Tissue Structure & Function
1.5.1Human Gas Exchange
1.5.2Blood Vessels
1.5.3Atherosclerosis
1.5.4Skeletal Muscle
1.5.5Slow & Fast Twitch Fibres
1.5.6Neurones
1.5.7Speed of Transmission
1.5.8Action Potentials
1.5.9End of Topic Test - Neurones & Action Potentials
1.5.10Synapses
1.5.11Types of Synapse
1.5.12Medical Application
1.5.13End of Topic Test - Synapses
1.5.14Chemical Brain Imbalances
1.5.15Effect of Drugs on the Brain
1.6Working with Waves
1.7Waves in Communication
2Practical Scientific Procedures and Techniques
3Science Investigation Skills
3.1Scientific Processes
3.2Data Handling & Analysis
3.3Enzymes in Action
3.4Diffusion
3.5Plants & Their Environment
3.6Energy Content in Fuels
4Principles of Science II
4.1Extracting Elements
4.2Relating Properties to use of Substances
4.3Organic Chemistry
4.4Energy Changes in Industry
4.5The Circulatory System
4.5.1The Circulatory System
4.5.2Blood Vessels
4.5.3Blood Transfusion & the ABO Rhesus System
4.5.4The Heart
4.5.5The Cardiac Cycle
4.5.6Cardiac Output
4.5.7Coordination of Heart Action
4.5.8Heart Dissection
4.5.9Controlling Heart Rate
4.5.10Electrocardiograms
4.5.11Cardiovascular Disease
4.5.12Investigating Heart Rates
4.6Ventilation & Gas Exchange
4.7Urinary System
4.9Thermal Physics
4.9.1Power & Efficiency
4.9.2Work & Energy
4.9.3Conservation of Energy
4.9.4Pressure
4.9.5First Law of Thermodynamics
4.9.6Second Law of Thermodynamics
4.9.7Heat Engines, Heat Pumps & Refrigerators
4.9.8Non-Flow Processes
4.9.9p-V Diagrams
4.9.10Ideal Gases
4.9.11Ideal Gases 2
4.9.12Thermal Energy Transfer
4.9.13Thermal Energy Transfer Experiments
4.10Materials
5Contemporary Issues in Science
5.1Contemporary Issues in Science
5.2Analysing Scientific Information
Jump to other topics
1Principles of Science I
1.1Structure & Bonding
1.1.1Atomic Model
1.1.2Electron Shells, Sub-Shells & Orbitals
1.1.3Ionic Bonding
1.1.4Representing Ionic Bonds
1.1.5Covalent Bonding
1.1.6Representing Covalent Bonds
1.1.7Metallic Bonding
1.1.8Intermolecular Forces
1.1.9Intermolecular Forces 2
1.1.10End of Topic Test - Bonding
1.1.11Relative Masses
1.1.12The Mole
1.1.13Molar Calculations
1.1.14Molar Calculations 2
1.1.15Empirical & Molecular Formulae
1.1.16Balanced Equations
1.1.17Percentage Yield
1.1.18End of Topic Test - Amount of Substance
1.2Properties of Substances
1.2.1The Periodic Table
1.2.2Ionisation Energy
1.2.3Factors Affecting Ionisation Energies
1.2.4Trends of Ionisation
1.2.5Trends in the Periodic Table
1.2.6Polarity
1.2.7Metals & Non-Metals
1.2.8Alkali Metals
1.2.9Alkaline Earth Metals
1.2.10Reactivity of Alkaline Earth Metals
1.2.11Redox
1.2.12Transition Metals
1.2.13Redox Reactions of Transition Metals
1.3Cell Structure & Function
1.4Cell Specialisation
1.5Tissue Structure & Function
1.5.1Human Gas Exchange
1.5.2Blood Vessels
1.5.3Atherosclerosis
1.5.4Skeletal Muscle
1.5.5Slow & Fast Twitch Fibres
1.5.6Neurones
1.5.7Speed of Transmission
1.5.8Action Potentials
1.5.9End of Topic Test - Neurones & Action Potentials
1.5.10Synapses
1.5.11Types of Synapse
1.5.12Medical Application
1.5.13End of Topic Test - Synapses
1.5.14Chemical Brain Imbalances
1.5.15Effect of Drugs on the Brain
1.6Working with Waves
1.7Waves in Communication
2Practical Scientific Procedures and Techniques
3Science Investigation Skills
3.1Scientific Processes
3.2Data Handling & Analysis
3.3Enzymes in Action
3.4Diffusion
3.5Plants & Their Environment
3.6Energy Content in Fuels
4Principles of Science II
4.1Extracting Elements
4.2Relating Properties to use of Substances
4.3Organic Chemistry
4.4Energy Changes in Industry
4.5The Circulatory System
4.5.1The Circulatory System
4.5.2Blood Vessels
4.5.3Blood Transfusion & the ABO Rhesus System
4.5.4The Heart
4.5.5The Cardiac Cycle
4.5.6Cardiac Output
4.5.7Coordination of Heart Action
4.5.8Heart Dissection
4.5.9Controlling Heart Rate
4.5.10Electrocardiograms
4.5.11Cardiovascular Disease
4.5.12Investigating Heart Rates
4.6Ventilation & Gas Exchange
4.7Urinary System
4.9Thermal Physics
4.9.1Power & Efficiency
4.9.2Work & Energy
4.9.3Conservation of Energy
4.9.4Pressure
4.9.5First Law of Thermodynamics
4.9.6Second Law of Thermodynamics
4.9.7Heat Engines, Heat Pumps & Refrigerators
4.9.8Non-Flow Processes
4.9.9p-V Diagrams
4.9.10Ideal Gases
4.9.11Ideal Gases 2
4.9.12Thermal Energy Transfer
4.9.13Thermal Energy Transfer Experiments
4.10Materials
5Contemporary Issues in Science
5.1Contemporary Issues in Science
5.2Analysing Scientific Information
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books