1.5.10
Synapses
Synapses
Synapses
A synapse is a junction between two neurones (e.g. a relay neurone and a motor neurone) or between a neurone and an effector (e.g a motor neurone and a muscle cell). The features of synapses are:


Synaptic cleft
Synaptic cleft
- At a synapse, there is a gap between the cells. This gap is called the synaptic cleft.
- When an action potential reaches a synapse, it must be transmitted across the synaptic cleft.


Presynaptic neurone
Presynaptic neurone
- The presynaptic neurone is the neurone before the synapse.
- When an action potential reaches the end of the neurone, it is transmitted across the presynaptic membrane to the postsynaptic membrane or to an effector cell.


Synaptic knob
Synaptic knob
- The end of the axon of the presynaptic neurone is called the synaptic knob.
- The synaptic knob is a swelling which contains synaptic vesicles.
- The synaptic knob is the location where the nerve impulse is transmitted across the synpatic cleft.
- There are also lots of mitochondria in the synaptic knob. This is because lots of energy is needed to synthesise neurotransmitters.


Synaptic vesicles
Synaptic vesicles
- Synaptic vesicles are vesicles located in the synaptic knob.
- The vesicles contain neurotransmitters. The vesicles fuse with the presynaptic membrane to release neurotransmitters into the synaptic cleft.


Neurotransmitters
Neurotransmitters
- Neurotransmitters are the chemicals that allow an action potential to be transferred across a synapse.
- When neurotransmitters are released from the synaptic vesicles into the synaptic cleft, they bind to specific receptors on the postsynaptic membrane.


Postsynaptic membrane
Postsynaptic membrane
- The postsynaptic membrane is the membrane of the postsynaptic neurone or effector cells.
- Receptors on the postsynaptic membrane have a complementary shape to the neurotransmitters released from the synaptic knob.
- When neurotransmitters bind to their receptors, the action potential continues.
- There are only receptors on the postsynaptic membrane. This ensures the nerve impulse only moves in one direction.
Neurotransmitters
Neurotransmitters
Neurotransmitters are the chemicals that allow an action potential to be transmitted across a synapse. They can be excitatory or inhibitory.


Excitatory
Excitatory
- Excitatory neurotransmitters generate an action potential in the postsynaptic cell.
- When the neurotransmitters bind to the receptors on the postsynaptic membrane, the membrane is depolarised.
- E.g. when acetylcholine binds to receptors on the postsynaptic membrane in the central nervous system (CNS) an action potential is established.


Inhibitory
Inhibitory
- Inhibitory neurotransmitters prevent an action potential from being generated in the postsynaptic cell.
- When the neurotransmitters bind to the receptors on the postsynaptic membrane, the membrane is hyperpolarised.
- E.g. when acetylcholine binds to receptors on the postsynaptic membrane in the heart, potassium ion channels are opened in the membrane. This prevents an action potential from being established.
Summation
Summation
Summation is the process where neurotransmitters from multiple neurones are summed together to produce a response. There are two types of summation: spatial and temporal.


Spatial summation
Spatial summation
- Spatial summation takes place when multiple presynaptic neurones form a junction with a single neurone.
- Each presynaptic neurone releases neurotransmitters. Overall there are many neurotransmitters that bind to the receptors on one postsynaptic membrane.
- Together the neurotransmitters can establish a generator potential that reaches the threshold value and an action potential is generated.


Temporal summation
Temporal summation
- Temporal summation takes place when multiple nerve impulses arrive at the same synaptic knob within a short period of time.
- More neurotransmitter is released into the synaptic cleft, so more neurotransmitter is available to bind to receptors on the postsynaptic membrane.
- Together the neurotransmitters can establish a generator potential that reaches the threshold value and an action potential is generated.
1Principles of Science I
1.1Structure & Bonding
1.1.1Atomic Model
1.1.2Electron Shells, Sub-Shells & Orbitals
1.1.3Ionic Bonding
1.1.4Representing Ionic Bonds
1.1.5Covalent Bonding
1.1.6Representing Covalent Bonds
1.1.7Metallic Bonding
1.1.8Intermolecular Forces
1.1.9Intermolecular Forces 2
1.1.10End of Topic Test - Bonding
1.1.11Relative Masses
1.1.12The Mole
1.1.13Molar Calculations
1.1.14Molar Calculations 2
1.1.15Empirical & Molecular Formulae
1.1.16Balanced Equations
1.1.17Percentage Yield
1.1.18End of Topic Test - Amount of Substance
1.2Properties of Substances
1.2.1The Periodic Table
1.2.2Ionisation Energy
1.2.3Factors Affecting Ionisation Energies
1.2.4Trends of Ionisation
1.2.5Trends in the Periodic Table
1.2.6Polarity
1.2.7Metals & Non-Metals
1.2.8Alkali Metals
1.2.9Alkaline Earth Metals
1.2.10Reactivity of Alkaline Earth Metals
1.2.11Redox
1.2.12Transition Metals
1.2.13Redox Reactions of Transition Metals
1.3Cell Structure & Function
1.4Cell Specialisation
1.5Tissue Structure & Function
1.5.1Human Gas Exchange
1.5.2Blood Vessels
1.5.3Atherosclerosis
1.5.4Skeletal Muscle
1.5.5Slow & Fast Twitch Fibres
1.5.6Neurones
1.5.7Speed of Transmission
1.5.8Action Potentials
1.5.9End of Topic Test - Neurones & Action Potentials
1.5.10Synapses
1.5.11Types of Synapse
1.5.12Medical Application
1.5.13End of Topic Test - Synapses
1.5.14Chemical Brain Imbalances
1.5.15Effect of Drugs on the Brain
1.6Working with Waves
1.7Waves in Communication
2Practical Scientific Procedures and Techniques
3Science Investigation Skills
3.1Scientific Processes
3.2Data Handling & Analysis
3.3Enzymes in Action
3.4Diffusion
3.5Plants & Their Environment
3.6Energy Content in Fuels
4Principles of Science II
4.1Extracting Elements
4.2Relating Properties to use of Substances
4.3Organic Chemistry
4.4Energy Changes in Industry
4.5The Circulatory System
4.5.1The Circulatory System
4.5.2Blood Vessels
4.5.3Blood Transfusion & the ABO Rhesus System
4.5.4The Heart
4.5.5The Cardiac Cycle
4.5.6Cardiac Output
4.5.7Coordination of Heart Action
4.5.8Heart Dissection
4.5.9Controlling Heart Rate
4.5.10Electrocardiograms
4.5.11Cardiovascular Disease
4.5.12Investigating Heart Rates
4.6Ventilation & Gas Exchange
4.7Urinary System
4.9Thermal Physics
4.9.1Power & Efficiency
4.9.2Work & Energy
4.9.3Conservation of Energy
4.9.4Pressure
4.9.5First Law of Thermodynamics
4.9.6Second Law of Thermodynamics
4.9.7Heat Engines, Heat Pumps & Refrigerators
4.9.8Non-Flow Processes
4.9.9p-V Diagrams
4.9.10Ideal Gases
4.9.11Ideal Gases 2
4.9.12Thermal Energy Transfer
4.9.13Thermal Energy Transfer Experiments
4.10Materials
5Contemporary Issues in Science
5.1Contemporary Issues in Science
5.2Analysing Scientific Information
Jump to other topics
1Principles of Science I
1.1Structure & Bonding
1.1.1Atomic Model
1.1.2Electron Shells, Sub-Shells & Orbitals
1.1.3Ionic Bonding
1.1.4Representing Ionic Bonds
1.1.5Covalent Bonding
1.1.6Representing Covalent Bonds
1.1.7Metallic Bonding
1.1.8Intermolecular Forces
1.1.9Intermolecular Forces 2
1.1.10End of Topic Test - Bonding
1.1.11Relative Masses
1.1.12The Mole
1.1.13Molar Calculations
1.1.14Molar Calculations 2
1.1.15Empirical & Molecular Formulae
1.1.16Balanced Equations
1.1.17Percentage Yield
1.1.18End of Topic Test - Amount of Substance
1.2Properties of Substances
1.2.1The Periodic Table
1.2.2Ionisation Energy
1.2.3Factors Affecting Ionisation Energies
1.2.4Trends of Ionisation
1.2.5Trends in the Periodic Table
1.2.6Polarity
1.2.7Metals & Non-Metals
1.2.8Alkali Metals
1.2.9Alkaline Earth Metals
1.2.10Reactivity of Alkaline Earth Metals
1.2.11Redox
1.2.12Transition Metals
1.2.13Redox Reactions of Transition Metals
1.3Cell Structure & Function
1.4Cell Specialisation
1.5Tissue Structure & Function
1.5.1Human Gas Exchange
1.5.2Blood Vessels
1.5.3Atherosclerosis
1.5.4Skeletal Muscle
1.5.5Slow & Fast Twitch Fibres
1.5.6Neurones
1.5.7Speed of Transmission
1.5.8Action Potentials
1.5.9End of Topic Test - Neurones & Action Potentials
1.5.10Synapses
1.5.11Types of Synapse
1.5.12Medical Application
1.5.13End of Topic Test - Synapses
1.5.14Chemical Brain Imbalances
1.5.15Effect of Drugs on the Brain
1.6Working with Waves
1.7Waves in Communication
2Practical Scientific Procedures and Techniques
3Science Investigation Skills
3.1Scientific Processes
3.2Data Handling & Analysis
3.3Enzymes in Action
3.4Diffusion
3.5Plants & Their Environment
3.6Energy Content in Fuels
4Principles of Science II
4.1Extracting Elements
4.2Relating Properties to use of Substances
4.3Organic Chemistry
4.4Energy Changes in Industry
4.5The Circulatory System
4.5.1The Circulatory System
4.5.2Blood Vessels
4.5.3Blood Transfusion & the ABO Rhesus System
4.5.4The Heart
4.5.5The Cardiac Cycle
4.5.6Cardiac Output
4.5.7Coordination of Heart Action
4.5.8Heart Dissection
4.5.9Controlling Heart Rate
4.5.10Electrocardiograms
4.5.11Cardiovascular Disease
4.5.12Investigating Heart Rates
4.6Ventilation & Gas Exchange
4.7Urinary System
4.9Thermal Physics
4.9.1Power & Efficiency
4.9.2Work & Energy
4.9.3Conservation of Energy
4.9.4Pressure
4.9.5First Law of Thermodynamics
4.9.6Second Law of Thermodynamics
4.9.7Heat Engines, Heat Pumps & Refrigerators
4.9.8Non-Flow Processes
4.9.9p-V Diagrams
4.9.10Ideal Gases
4.9.11Ideal Gases 2
4.9.12Thermal Energy Transfer
4.9.13Thermal Energy Transfer Experiments
4.10Materials
5Contemporary Issues in Science
5.1Contemporary Issues in Science
5.2Analysing Scientific Information
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books