4.7.3

Area of 2D Shapes

Test yourself

Area of a Triangle

We can use the formula: area of a triangle = 12ab sin(C).

Illustrative background for FormulaIllustrative background for Formula ?? "content

Formula

  • Area of a triangle = 12ab sin(C) since the vertical height is b sin(C).
  • This formula can also be used to calculate the side length of a triangle whose area is known.
Illustrative background for ExampleIllustrative background for Example ?? "content

Example

  • If we are given a triangle with two sides of 8cm and 10cm and the area is 20cm2, we can calculate the angle between the sides as follows:
    • 20 = 12 × 8 × 10 × sin(C)
    • 20 = 40 × sin(C)
    • sin(C) = 12
    • C = 30°

Calculating Area of 2D Shapes

We can use formulae to calculate the area of common shapes.

Illustrative background for TriangleIllustrative background for Triangle ?? "content

Triangle

  • Area = 12 × base × vertical height.
Illustrative background for ParallelogramIllustrative background for Parallelogram ?? "content

Parallelogram

  • Area = base × vertical height.
Illustrative background for TrapeziumIllustrative background for Trapezium ?? "content

Trapezium

  • Area = 12 × (a + b) × vertical height.

Fractions of Circles

Illustrative background for Arc lengthIllustrative background for Arc length ?? "content

Arc length

  • An arc length is a fraction of the circumference of the circle:
    • Arc length = angle360 × circumference of circle
    • Arc length = angle360 × 2πr
Illustrative background for Area of a sectorIllustrative background for Area of a sector ?? "content

Area of a sector

  • The area of a sector is a fraction of the area of the circle:
    • Area of sector = angle360 × πr2
Illustrative background for Area of a segmentIllustrative background for Area of a segment ?? "content

Area of a segment

  • To find the area of a segment, find the area of the full sector and subtract the area of the triangle using the formula:
    • Area of triangle = 12 × ab × sin(C)
  • Therefore:
    • Area of segment = (angle360 × πr2) - (12 × ab × sin(C))

Jump to other topics

1Numbers

2Equations, Formulae & Identities

3Sequences, Functions & Graphs

4Geometry

5Vectors & Transformation Geometry

6Statistics & Probability

Unlock your full potential with Seneca Premium

  • Unlimited access to 10,000+ open-ended exam questions

  • Mini-mock exams based on your study history

  • Unlock 800+ premium courses & e-books

Get started with Seneca Premium