6.7.1
Introduction to Electrochemical Cells
Electrochemical Cells
Electrochemical Cells
An electrochemical cell can be used to make an electrical current.


How is a current made?
How is a current made?
- There are two processes happening in a cell: oxidation and reduction.
- One metal is oxidized and gives up electrons.
- In the other side of the cell, the other metal accepts these electrons.
- The electrons travel from one side of the cell to the other via the wire, which is the electrical current.


Electrodes
Electrodes
- Often, you’ll use an electrode that is made of the same metals that are being oxidized or reduced.
- But you don’t have to, and if one of your equations doesn’t involve a solid being formed or lost, you’ll need to use a different metal.
- In these circumstances, we use a platinum electrode because they are inert and so don’t tend to react with anything.


OIL RIG
OIL RIG
- OIL RIG is a useful mnemonic for remembering the difference between oxidation and reduction:
- Oxidation Is Loss (of electrons).
- Reduction Is Gain (of electrons).
1Structure - Models of the Particulate of Matter
1.1Introduction to the Particulate Model of Matter
1.2The Nuclear Atom
1.3Electron Configuration
1.4Counting Particles by Mass: The Mole
1.6Elements, Compounds & Mixtures
1.7States of Matter & Changes of State
1.8Reacting Masses &. Volumes
1.9Solutions
2Structure - Models of Bonding & Structure
2.1The Ionic Model
2.2The Covalent Model
2.3Covalent Structures
2.4The Metallic Model
2.5From Models to Materials
2.6Valence Electrons & Ionic Compounds
2.7Molecular Shape
3Structure - Classification of Matter
3.1The Periodic Table: Classification of Elements
3.2Periodic Trends
3.3Group 1 Alkali Metals
3.4Halogens
3.5Noble gases, group 18
3.6Functional Groups: Classification of Organic
3.7Functional Group Chemistry
3.8Alkanes
3.9Alcohols
4Reactivity - What Drives Chemical Reaction?
4.1Endothermic & Exothermic Reactions
4.2Enthalpy of Reaction, Formation, & Hess' Law
5Reactivity - How Much, How Fast & How Far?
5.1Kinetics
5.2Rates of Reaction
5.3Stoichometry
5.4Le Châtelier’s Principle
5.5Introduction to Equilibrium
5.6Equilibrium Constant
5.7Reaction Quotient & Equilibrium Constant
6Reactivity - The Mechanisms of Chemical Change
6.1Proton Transfer Reactions
6.2The pH Scale
6.3Strong & Weak Acids and Bases
6.4Acid Deposition
6.5Types of Organic Reactions
6.6Oxidation & Reduction
6.7Electrochemical Cells
6.9Acid-Base Titrations
6.9.1Titration Calculation Weak Acid & Strong Base
6.9.2Titration Experimental Detail
6.9.3Extended Response - Titration
6.9.4Titration Calculations
6.9.5Titration Curves
6.9.6Titration Calculation Strong Acid & Weak Base
6.9.7IB Multiple Choice - Titrations
6.9.8Polyprotic Acids
6.9.9Titration Calculations Strong Acid & Strong Base
6.9.10Titrations Curves 2
7Measurement, Data Processing & Analysis
7.1Uncertainties & Errors in Measurements & Results
7.2Graphical Techniques
7.3Spectroscopic Identification of Organic Compounds
7.4Infrared Spectroscpy
Jump to other topics
1Structure - Models of the Particulate of Matter
1.1Introduction to the Particulate Model of Matter
1.2The Nuclear Atom
1.3Electron Configuration
1.4Counting Particles by Mass: The Mole
1.6Elements, Compounds & Mixtures
1.7States of Matter & Changes of State
1.8Reacting Masses &. Volumes
1.9Solutions
2Structure - Models of Bonding & Structure
2.1The Ionic Model
2.2The Covalent Model
2.3Covalent Structures
2.4The Metallic Model
2.5From Models to Materials
2.6Valence Electrons & Ionic Compounds
2.7Molecular Shape
3Structure - Classification of Matter
3.1The Periodic Table: Classification of Elements
3.2Periodic Trends
3.3Group 1 Alkali Metals
3.4Halogens
3.5Noble gases, group 18
3.6Functional Groups: Classification of Organic
3.7Functional Group Chemistry
3.8Alkanes
3.9Alcohols
4Reactivity - What Drives Chemical Reaction?
4.1Endothermic & Exothermic Reactions
4.2Enthalpy of Reaction, Formation, & Hess' Law
5Reactivity - How Much, How Fast & How Far?
5.1Kinetics
5.2Rates of Reaction
5.3Stoichometry
5.4Le Châtelier’s Principle
5.5Introduction to Equilibrium
5.6Equilibrium Constant
5.7Reaction Quotient & Equilibrium Constant
6Reactivity - The Mechanisms of Chemical Change
6.1Proton Transfer Reactions
6.2The pH Scale
6.3Strong & Weak Acids and Bases
6.4Acid Deposition
6.5Types of Organic Reactions
6.6Oxidation & Reduction
6.7Electrochemical Cells
6.9Acid-Base Titrations
6.9.1Titration Calculation Weak Acid & Strong Base
6.9.2Titration Experimental Detail
6.9.3Extended Response - Titration
6.9.4Titration Calculations
6.9.5Titration Curves
6.9.6Titration Calculation Strong Acid & Weak Base
6.9.7IB Multiple Choice - Titrations
6.9.8Polyprotic Acids
6.9.9Titration Calculations Strong Acid & Strong Base
6.9.10Titrations Curves 2
7Measurement, Data Processing & Analysis
7.1Uncertainties & Errors in Measurements & Results
7.2Graphical Techniques
7.3Spectroscopic Identification of Organic Compounds
7.4Infrared Spectroscpy
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books