1.2.3
Mass Spectrometry
Workings of a Mass Spectrometer
Workings of a Mass Spectrometer
The mass spectrometer is split into four stages: ionisation, acceleration, ion drift and detection.


1) Ionisation
1) Ionisation
- The first step is ionisation of the sample. The main techniques are:
- Electrospray ionisation.
- Electron impact ionisation.
- Electrospray ionisation is a gentler technique and prevents fragmentation.
- It’s typically used for polymers and biological materials like DNA.
- The sample is dissolved in a solvent and a high voltage is applied.
- The high voltage rips a proton off the solvent and attaches it to the sample molecules.
- The sample molecules are now positively charged ions.


1) Ionisation cont.
1) Ionisation cont.
- In electron impact ionisation, the sample is first vaporised and then hit with electrons from an electron gun.
- The electrons knock off electrons from the molecule
- The molecules are now positively charged ions.
- This method often causes the sample to fragment.


2) Acceleration
2) Acceleration
- Molecules are accelerated to all have the same kinetic energy.
- From standard equations, the kinetic energy is equal to half of the mass multiplied by the velocity squared:
- Kinetic energy = mv2
- All the molecules have the same kinetic energy, so the speed is dependent on the mass of the molecule.
- Lighter particles move faster and are detected before heavier particles.


3) Ion drift
3) Ion drift
- The time of flight is given by:
- Time of flight =
- This leads to an equation for the time travelled that depends on mass:
- Time = distance ÷
- Lighter ions take less time as the time is dependent on the square root of the mass.
,h_400,q_80,w_640.png)
,h_400,q_80,w_640.png)
4) Detection
4) Detection
- The ions hit a negatively charged plate.
- This causes a current and the size of this current gives a measure of the number of molecules hitting the plate.
- This gives the abundance of the molecule.
Analysis to Identify Molecules
Analysis to Identify Molecules
Once a sample has passed through the mass spectrometer, we can analyse the data to identify the molecule.


Spectrum produced
Spectrum produced
- When the sample has passed through the mass spectrometer, a spectrum is produced by the spectrometer.
- On this spectrum:
- The x-axis is mass/charge ratio.
- The y-axis is % abundance.


Main peak
Main peak
- The spectrum produces lots of peaks, but the most important is the molecular ion peak.
- This is the peak of the greatest mass/charge ratio.
- This represents the mass/charge value of the molecule we are analyzing.


Isotopes
Isotopes
- Smaller peaks will cluster around the molecular ion peak.
- These are from the same molecules but with different isotopes in them.
- The isotopic molecules have different masses and so different mass/charge ratio values.


Fragmentation
Fragmentation
- Any smaller and significantly lighter peaks in the spectrum are because of fragmentation.
- The molecule can fragment in the spectrometer.
Analysis to Calculate
Analysis to Calculate
Once we have the mass spectrum, we can calculate the relative atomic mass.


Relative atomic mass
Relative atomic mass
- Relative atomic mass is the average weighted mass of an atom relative to carbon-12.
- The key word to look at here is "average".
- This is because its value is calculated taking into account all of its isotopes and their relative abundances.


Using the spectrum
Using the spectrum
- We can use the spectrum to view all the different isotopes and their relative abundance.
- Isotopic mass is along the x-axis.
- Isotopic abundance is along the y-axis.
-min,h_400,q_80,w_640.jpg)
-min,h_400,q_80,w_640.jpg)
Calculation
Calculation
- We can then calculate the relative atomic mass since we have all of the isotopic masses and their relative abundances.
- It is easiest to show how to carry out the calculation with an example - see the next slide.


Example - boron
Example - boron
- This is the mass spectrum of a sample of elemental boron.
- Boron has two isotopes, 10B and 11B.
- You can see from the spectrum that approximately 20% of the boron is 10B and 80% is 11B.
- You can use this to work out the relative atomic mass:
- 80% × 11 + 20% × 10 = 10.8




1Structure - Models of the Particulate of Matter
1.1Introduction to the Particulate Model of Matter
1.2The Nuclear Atom
1.3Electron Configuration
1.4Counting Particles by Mass: The Mole
1.6Elements, Compounds & Mixtures
1.7States of Matter & Changes of State
1.8Reacting Masses &. Volumes
1.9Solutions
2Structure - Models of Bonding & Structure
2.1The Ionic Model
2.2The Covalent Model
2.3Covalent Structures
2.4The Metallic Model
2.5From Models to Materials
2.6Valence Electrons & Ionic Compounds
2.7Molecular Shape
3Structure - Classification of Matter
3.1The Periodic Table: Classification of Elements
3.2Periodic Trends
3.3Group 1 Alkali Metals
3.4Halogens
3.5Noble gases, group 18
3.6Functional Groups: Classification of Organic
3.7Functional Group Chemistry
3.8Alkanes
3.9Alcohols
4Reactivity - What Drives Chemical Reaction?
4.1Endothermic & Exothermic Reactions
4.2Enthalpy of Reaction, Formation, & Hess' Law
5Reactivity - How Much, How Fast & How Far?
5.1Kinetics
5.2Rates of Reaction
5.3Stoichometry
5.4Le Châtelier’s Principle
5.5Introduction to Equilibrium
5.6Equilibrium Constant
5.7Reaction Quotient & Equilibrium Constant
6Reactivity - The Mechanisms of Chemical Change
6.1Proton Transfer Reactions
6.2The pH Scale
6.3Strong & Weak Acids and Bases
6.4Acid Deposition
6.5Types of Organic Reactions
6.6Oxidation & Reduction
6.7Electrochemical Cells
6.9Acid-Base Titrations
6.9.1Titration Calculation Weak Acid & Strong Base
6.9.2Titration Experimental Detail
6.9.3Extended Response - Titration
6.9.4Titration Calculations
6.9.5Titration Curves
6.9.6Titration Calculation Strong Acid & Weak Base
6.9.7IB Multiple Choice - Titrations
6.9.8Polyprotic Acids
6.9.9Titration Calculations Strong Acid & Strong Base
6.9.10Titrations Curves 2
7Measurement, Data Processing & Analysis
7.1Uncertainties & Errors in Measurements & Results
7.2Graphical Techniques
7.3Spectroscopic Identification of Organic Compounds
7.4Infrared Spectroscpy
Jump to other topics
1Structure - Models of the Particulate of Matter
1.1Introduction to the Particulate Model of Matter
1.2The Nuclear Atom
1.3Electron Configuration
1.4Counting Particles by Mass: The Mole
1.6Elements, Compounds & Mixtures
1.7States of Matter & Changes of State
1.8Reacting Masses &. Volumes
1.9Solutions
2Structure - Models of Bonding & Structure
2.1The Ionic Model
2.2The Covalent Model
2.3Covalent Structures
2.4The Metallic Model
2.5From Models to Materials
2.6Valence Electrons & Ionic Compounds
2.7Molecular Shape
3Structure - Classification of Matter
3.1The Periodic Table: Classification of Elements
3.2Periodic Trends
3.3Group 1 Alkali Metals
3.4Halogens
3.5Noble gases, group 18
3.6Functional Groups: Classification of Organic
3.7Functional Group Chemistry
3.8Alkanes
3.9Alcohols
4Reactivity - What Drives Chemical Reaction?
4.1Endothermic & Exothermic Reactions
4.2Enthalpy of Reaction, Formation, & Hess' Law
5Reactivity - How Much, How Fast & How Far?
5.1Kinetics
5.2Rates of Reaction
5.3Stoichometry
5.4Le Châtelier’s Principle
5.5Introduction to Equilibrium
5.6Equilibrium Constant
5.7Reaction Quotient & Equilibrium Constant
6Reactivity - The Mechanisms of Chemical Change
6.1Proton Transfer Reactions
6.2The pH Scale
6.3Strong & Weak Acids and Bases
6.4Acid Deposition
6.5Types of Organic Reactions
6.6Oxidation & Reduction
6.7Electrochemical Cells
6.9Acid-Base Titrations
6.9.1Titration Calculation Weak Acid & Strong Base
6.9.2Titration Experimental Detail
6.9.3Extended Response - Titration
6.9.4Titration Calculations
6.9.5Titration Curves
6.9.6Titration Calculation Strong Acid & Weak Base
6.9.7IB Multiple Choice - Titrations
6.9.8Polyprotic Acids
6.9.9Titration Calculations Strong Acid & Strong Base
6.9.10Titrations Curves 2
7Measurement, Data Processing & Analysis
7.1Uncertainties & Errors in Measurements & Results
7.2Graphical Techniques
7.3Spectroscopic Identification of Organic Compounds
7.4Infrared Spectroscpy
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books