5.3.1
Stoichiometry
Stoichiometry
Stoichiometry
Stoichiometry is used to find the relative amounts of reactants or products involved in chemical reactions.


Stoichiometric factors
Stoichiometric factors
- Atoms must be conserved in any chemical reaction.
- We can use this together with the coefficients in a balanced equation to derive stoichiometric factors.
- Stoichiometric factors are ratios of the amount of a particular species in the reaction compared to the amount of another species.
- Typically stoichiometric factors are calculated using the number of molecules or number of moles.


Ammonia
Ammonia
- The production of ammonia is given by the following balanced equation:
- The stoichiometric factor for ammonia molecules produced from hydrogen molecules is:
-min,h_400,q_80,w_640.png)
-min,h_400,q_80,w_640.png)
Ideal gas law
Ideal gas law
- We can work out the volume of reactants and products using the stoichiometric factors in conjunction with the ideal gas law.
- Volume = number of moles ÷ molarity
- Once we know the volume, we can do calculations using the ideal gas law to find the properties of reactants and products.
-min,h_400,q_80,w_640.png)
-min,h_400,q_80,w_640.png)
1Structure - Models of the Particulate of Matter
1.1Introduction to the Particulate Model of Matter
1.2The Nuclear Atom
1.3Electron Configuration
1.4Counting Particles by Mass: The Mole
1.6Elements, Compounds & Mixtures
1.7States of Matter & Changes of State
1.8Reacting Masses &. Volumes
1.9Solutions
2Structure - Models of Bonding & Structure
2.1The Ionic Model
2.2The Covalent Model
2.3Covalent Structures
2.4The Metallic Model
2.5From Models to Materials
2.6Valence Electrons & Ionic Compounds
2.7Molecular Shape
3Structure - Classification of Matter
3.1The Periodic Table: Classification of Elements
3.2Periodic Trends
3.3Group 1 Alkali Metals
3.4Halogens
3.5Noble gases, group 18
3.6Functional Groups: Classification of Organic
3.7Functional Group Chemistry
3.8Alkanes
3.9Alcohols
4Reactivity - What Drives Chemical Reaction?
4.1Endothermic & Exothermic Reactions
4.2Enthalpy of Reaction, Formation, & Hess' Law
5Reactivity - How Much, How Fast & How Far?
5.1Kinetics
5.2Rates of Reaction
5.3Stoichometry
5.4Le Châtelier’s Principle
5.5Introduction to Equilibrium
5.6Equilibrium Constant
5.7Reaction Quotient & Equilibrium Constant
6Reactivity - The Mechanisms of Chemical Change
6.1Proton Transfer Reactions
6.2The pH Scale
6.3Strong & Weak Acids and Bases
6.4Acid Deposition
6.5Types of Organic Reactions
6.6Oxidation & Reduction
6.7Electrochemical Cells
6.9Acid-Base Titrations
6.9.1Titration Calculation Weak Acid & Strong Base
6.9.2Titration Experimental Detail
6.9.3Extended Response - Titration
6.9.4Titration Calculations
6.9.5Titration Curves
6.9.6Titration Calculation Strong Acid & Weak Base
6.9.7IB Multiple Choice - Titrations
6.9.8Polyprotic Acids
6.9.9Titration Calculations Strong Acid & Strong Base
6.9.10Titrations Curves 2
7Measurement, Data Processing & Analysis
7.1Uncertainties & Errors in Measurements & Results
7.2Graphical Techniques
7.3Spectroscopic Identification of Organic Compounds
7.4Infrared Spectroscpy
Jump to other topics
1Structure - Models of the Particulate of Matter
1.1Introduction to the Particulate Model of Matter
1.2The Nuclear Atom
1.3Electron Configuration
1.4Counting Particles by Mass: The Mole
1.6Elements, Compounds & Mixtures
1.7States of Matter & Changes of State
1.8Reacting Masses &. Volumes
1.9Solutions
2Structure - Models of Bonding & Structure
2.1The Ionic Model
2.2The Covalent Model
2.3Covalent Structures
2.4The Metallic Model
2.5From Models to Materials
2.6Valence Electrons & Ionic Compounds
2.7Molecular Shape
3Structure - Classification of Matter
3.1The Periodic Table: Classification of Elements
3.2Periodic Trends
3.3Group 1 Alkali Metals
3.4Halogens
3.5Noble gases, group 18
3.6Functional Groups: Classification of Organic
3.7Functional Group Chemistry
3.8Alkanes
3.9Alcohols
4Reactivity - What Drives Chemical Reaction?
4.1Endothermic & Exothermic Reactions
4.2Enthalpy of Reaction, Formation, & Hess' Law
5Reactivity - How Much, How Fast & How Far?
5.1Kinetics
5.2Rates of Reaction
5.3Stoichometry
5.4Le Châtelier’s Principle
5.5Introduction to Equilibrium
5.6Equilibrium Constant
5.7Reaction Quotient & Equilibrium Constant
6Reactivity - The Mechanisms of Chemical Change
6.1Proton Transfer Reactions
6.2The pH Scale
6.3Strong & Weak Acids and Bases
6.4Acid Deposition
6.5Types of Organic Reactions
6.6Oxidation & Reduction
6.7Electrochemical Cells
6.9Acid-Base Titrations
6.9.1Titration Calculation Weak Acid & Strong Base
6.9.2Titration Experimental Detail
6.9.3Extended Response - Titration
6.9.4Titration Calculations
6.9.5Titration Curves
6.9.6Titration Calculation Strong Acid & Weak Base
6.9.7IB Multiple Choice - Titrations
6.9.8Polyprotic Acids
6.9.9Titration Calculations Strong Acid & Strong Base
6.9.10Titrations Curves 2
7Measurement, Data Processing & Analysis
7.1Uncertainties & Errors in Measurements & Results
7.2Graphical Techniques
7.3Spectroscopic Identification of Organic Compounds
7.4Infrared Spectroscpy
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books