3.9.10
Proton NMR I
1H Environments
1H Environments
1H NMR is the next type of NMR we will study. It is slightly harder than 13C NMR but the basic principles are the same.


Chemical shifts
Chemical shifts
- As in 13C NMR, 1H NMR spectra display signals at different chemical shift values.
- These chemical shift values represent different 1H environments.
- E.g. If the spectrum has four peaks, there are four different chemical environments with an unknown number of 1H's in each environment.
- We can use chemical shift tables to identify 1H environments and functional groups from the signals in spectra.


Tetramethylsilane
Tetramethylsilane
- As in 13C NMR, 1H NMR's reference is tetramethylsilane (TMS).
- TMS has a chemical shift of 0 ppm.
- TMS produces a single peak because each 1H in TMS is in the same environment.


Signal ratios
Signal ratios
- An extra piece of information that 1H NMR gives us over 13C NMR is based around the ratio of the areas underneath the signals.
- The ratio of the areas reflects the ratio of how many protons are in that same environment.
- E.g. If there are two singlet peaks and one peak is twice as big as the other, this means that the chemical environment of the bigger peak has twice as many 1H's as the other environment.
Splitting Patterns
Splitting Patterns
1H NMR gets slightly harder than 13C NMR when we consider splitting patterns. But, this pays off because it gives us lots of useful information.


Signals splitting
Signals splitting
- In 1H NMR, the main signals that represent different chemical environments have fine splitting patterns.
- The main signal may be split into a number of fine peaks. Peaks have different names depending on how many splits they have:
- No splittings = singlet.
- Split into two = doublet.
- Split into three = triplet.
- Split into four = quartet.


Information from splittings
Information from splittings
- Signal splitting helps us work out the number of 1H's in different environments. Beware, this is not straightforward!
- Number of fine splittings = number of 1H's on adjacent carbon + 1
- This is called the n+1 rule.
- Number of fine splittings = number of 1H's on adjacent carbon + 1


Example: Diethyl ether
Example: Diethyl ether
- There are only two different proton environments in diethyl ether.
- The adjacent CH2 and CH3 groups creates the splitting patterns seen above.


Example: Propanol
Example: Propanol
- CH3 group: split into a triplet due to adjacent CH2 group.
- Middle CH2 group: split into a sextet due to adjacent CH2 group on one side and CH3 group on the other side.
- CH2 group next to -OH: split into a triplet due to adjacent CH2 group.
- OH group: is a singlet as no adjacent carbons.
1Physical Chemistry
1.1Atoms, Molecules & Stoichiometry
1.2Atomic Structure
1.2.1Fundamental Particles
1.2.2Isotopes & Mass Number
1.2.3Electron Shells, Sub-Shells & Orbitals
1.2.4Electron Configuration
1.2.5Ionisation Energy
1.2.6Factors Affecting Ionisation Energies
1.2.7Trends of Ionisation
1.2.8Specific Impacts on Ionisation Energies
1.2.9Electron Affinity
1.2.10End of Topic Test - Atomic Structure
1.2.11A-A* (AO2/3) - Atomic Structure
1.3Chemical Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Shapes of Molecules
1.3.4Intermolecular Forces
1.3.5Intermolecular Forces 2
1.3.6Electronegativity
1.3.7Bond Length, Bond Energy, & Bond Polarity
1.3.8Metallic Bonding
1.3.9Physical Properties
1.3.10End of Topic Test - Bonding
1.3.11A-A* (AO2/3) - Bonding
1.4States of Matter
1.5Chemical Energetics
1.6Electrochemistry
1.7Equilibria
1.7.1Dynamic Equilibrium & Le Chatelier
1.7.2Kc
1.7.3Kp
1.7.4pH
1.7.5The Ionic Product of Water
1.7.6Weak Acids & Bases
1.7.7Introduction to Solubility Equilibria
1.7.8Solubility Equilibria Calculations
1.7.9Free Energy of Dissolution
1.7.10pH and Solubility
1.7.11Common-Ion Effect
1.7.12End of Topic Test - Kp & Electrochemistry
1.7.13A-A* (AO2/3) - Electrochemical Cells
1.8Partition Coefficient
1.9Reaction Kinetics
1.9.1Collision Theory
1.9.2Orders, Rate Constants & Equations
1.9.3Rate Graphs
1.9.4Rate Determining Step
1.9.5Maxwell-Boltzmann Distribution
1.9.6Catalysts
1.9.7Homogeneous Catalysts
1.9.8Heterogeneous Catalysts
1.9.9End of Topic Test - Kinetics
1.9.10End of Topic Test - Rate Equations
1.9.11A-A* (AO2/3) - Rate Equations
2Inorganic Chemistry
2.1The Periodic Table
2.2Group 2
2.3Group 17
2.4Transition Metals
3Organic Chemistry & Analysis
3.1Introduction to Organic Chemistry
3.2Hydrocarbons
3.2.1Fractional Distillation
3.2.2Cracking
3.2.3Combustion
3.2.4Chlorination
3.2.5End of Topic Test - Alkanes
3.2.6Introduction to Alkenes
3.2.7Reactions of Alkenes
3.2.8Polymerisation Reactions
3.2.9End of Topic Test - Alkenes
3.2.10Arenes
3.2.11Evidence for Structure of Arenes
3.2.12Reactions of Benzene
3.2.13End of Topic Test -Arenes
3.3Halogen Derivatives
3.4Hydroxy Compounds
3.5Carbonyl Compounds
3.6Carboxylic Acids & Derivatives
3.7Nitrogen Compounds
3.8Polymerisation
3.9Analytical Techniques
3.9.1Chromatography
3.9.2High-Performance Liquid Chromatography
3.9.3Gas Chromatography
3.9.4IR Spectroscopy
3.9.5Uses of IR Spectroscopy
3.9.6Mass Spectrometry
3.9.7Mass Spectrometry Analysis
3.9.8Nuclear Magnetic Resonance
3.9.9Carbon-13 NMR
3.9.10Proton NMR I
3.9.11Proton NMR II
3.9.12End of Topic Test - Analytical Techniques
3.9.13A-A* (AO2/3) - Analytical Techniques
Jump to other topics
1Physical Chemistry
1.1Atoms, Molecules & Stoichiometry
1.2Atomic Structure
1.2.1Fundamental Particles
1.2.2Isotopes & Mass Number
1.2.3Electron Shells, Sub-Shells & Orbitals
1.2.4Electron Configuration
1.2.5Ionisation Energy
1.2.6Factors Affecting Ionisation Energies
1.2.7Trends of Ionisation
1.2.8Specific Impacts on Ionisation Energies
1.2.9Electron Affinity
1.2.10End of Topic Test - Atomic Structure
1.2.11A-A* (AO2/3) - Atomic Structure
1.3Chemical Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Shapes of Molecules
1.3.4Intermolecular Forces
1.3.5Intermolecular Forces 2
1.3.6Electronegativity
1.3.7Bond Length, Bond Energy, & Bond Polarity
1.3.8Metallic Bonding
1.3.9Physical Properties
1.3.10End of Topic Test - Bonding
1.3.11A-A* (AO2/3) - Bonding
1.4States of Matter
1.5Chemical Energetics
1.6Electrochemistry
1.7Equilibria
1.7.1Dynamic Equilibrium & Le Chatelier
1.7.2Kc
1.7.3Kp
1.7.4pH
1.7.5The Ionic Product of Water
1.7.6Weak Acids & Bases
1.7.7Introduction to Solubility Equilibria
1.7.8Solubility Equilibria Calculations
1.7.9Free Energy of Dissolution
1.7.10pH and Solubility
1.7.11Common-Ion Effect
1.7.12End of Topic Test - Kp & Electrochemistry
1.7.13A-A* (AO2/3) - Electrochemical Cells
1.8Partition Coefficient
1.9Reaction Kinetics
1.9.1Collision Theory
1.9.2Orders, Rate Constants & Equations
1.9.3Rate Graphs
1.9.4Rate Determining Step
1.9.5Maxwell-Boltzmann Distribution
1.9.6Catalysts
1.9.7Homogeneous Catalysts
1.9.8Heterogeneous Catalysts
1.9.9End of Topic Test - Kinetics
1.9.10End of Topic Test - Rate Equations
1.9.11A-A* (AO2/3) - Rate Equations
2Inorganic Chemistry
2.1The Periodic Table
2.2Group 2
2.3Group 17
2.4Transition Metals
3Organic Chemistry & Analysis
3.1Introduction to Organic Chemistry
3.2Hydrocarbons
3.2.1Fractional Distillation
3.2.2Cracking
3.2.3Combustion
3.2.4Chlorination
3.2.5End of Topic Test - Alkanes
3.2.6Introduction to Alkenes
3.2.7Reactions of Alkenes
3.2.8Polymerisation Reactions
3.2.9End of Topic Test - Alkenes
3.2.10Arenes
3.2.11Evidence for Structure of Arenes
3.2.12Reactions of Benzene
3.2.13End of Topic Test -Arenes
3.3Halogen Derivatives
3.4Hydroxy Compounds
3.5Carbonyl Compounds
3.6Carboxylic Acids & Derivatives
3.7Nitrogen Compounds
3.8Polymerisation
3.9Analytical Techniques
3.9.1Chromatography
3.9.2High-Performance Liquid Chromatography
3.9.3Gas Chromatography
3.9.4IR Spectroscopy
3.9.5Uses of IR Spectroscopy
3.9.6Mass Spectrometry
3.9.7Mass Spectrometry Analysis
3.9.8Nuclear Magnetic Resonance
3.9.9Carbon-13 NMR
3.9.10Proton NMR I
3.9.11Proton NMR II
3.9.12End of Topic Test - Analytical Techniques
3.9.13A-A* (AO2/3) - Analytical Techniques
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books