1.1.3
Mass Spectrometry
Analysis to Identify Molecules
Analysis to Identify Molecules
A mass spectrometer is a piece of equipment used to help identify molecules. Unknown molecules are passed through the spectrometer and a mass spectrum is produced.


Spectrum produced
Spectrum produced
- When the sample has passed through the mass spectrometer, a spectrum is produced by the spectrometer.
- On this spectrum:
- The x-axis is mass/charge ratio.
- The y-axis is % abundance.


Main peak
Main peak
- The spectrum produces lots of peaks, but the most important is the molecular ion peak.
- This is the peak of the greatest mass/charge ratio.
- This represents the mass/charge value of the molecule we are analyzing.


Isotopes
Isotopes
- Smaller peaks will cluster around the molecular ion peak.
- These are from the same molecules but with different isotopes in them.
- The isotopic molecules have different masses and so different mass/charge ratio values.


Fragmentation
Fragmentation
- Any smaller and significantly lighter peaks in the spectrum are because of fragmentation.
- The molecule can fragment in the spectrometer.
Analysis to Calculate
Analysis to Calculate
Once we have the mass spectrum, we can calculate the relative atomic mass.


Relative atomic mass
Relative atomic mass
- Relative atomic mass is the average weighted mass of an atom relative to carbon-12.
- The key word to look at here is "average".
- This is because its value is calculated taking into account all of its isotopes and their relative abundances.


Using the spectrum
Using the spectrum
- We can use the spectrum to view all the different isotopes and their relative abundance.
- Isotopic mass is along the x-axis.
- Isotopic abundance is along the y-axis.
-min,h_400,q_80,w_640.jpg)
-min,h_400,q_80,w_640.jpg)
Calculation
Calculation
- We can then calculate the relative atomic mass since we have all of the isotopic masses and their relative abundances.
- It is easiest to show how to carry out the calculation with an example - see the next slide.


Example - boron
Example - boron
- This is the mass spectrum of a sample of elemental boron.
- Boron has two isotopes, 10B and 11B.
- You can see from the spectrum that approximately 20% of the boron is 10B and 80% is 11B.
- You can use this to work out the relative atomic mass:
- 80% × 11 + 20% × 10 = 10.8




1Physical Chemistry
1.1Atoms, Molecules & Stoichiometry
1.2Atomic Structure
1.2.1Fundamental Particles
1.2.2Isotopes & Mass Number
1.2.3Electron Shells, Sub-Shells & Orbitals
1.2.4Electron Configuration
1.2.5Ionisation Energy
1.2.6Factors Affecting Ionisation Energies
1.2.7Trends of Ionisation
1.2.8Specific Impacts on Ionisation Energies
1.2.9Electron Affinity
1.2.10End of Topic Test - Atomic Structure
1.2.11A-A* (AO2/3) - Atomic Structure
1.3Chemical Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Shapes of Molecules
1.3.4Intermolecular Forces
1.3.5Intermolecular Forces 2
1.3.6Electronegativity
1.3.7Bond Length, Bond Energy, & Bond Polarity
1.3.8Metallic Bonding
1.3.9Physical Properties
1.3.10End of Topic Test - Bonding
1.3.11A-A* (AO2/3) - Bonding
1.4States of Matter
1.5Chemical Energetics
1.6Electrochemistry
1.7Equilibria
1.7.1Dynamic Equilibrium & Le Chatelier
1.7.2Kc
1.7.3Kp
1.7.4pH
1.7.5The Ionic Product of Water
1.7.6Weak Acids & Bases
1.7.7Introduction to Solubility Equilibria
1.7.8Solubility Equilibria Calculations
1.7.9Free Energy of Dissolution
1.7.10pH and Solubility
1.7.11Common-Ion Effect
1.7.12End of Topic Test - Kp & Electrochemistry
1.7.13A-A* (AO2/3) - Electrochemical Cells
1.8Partition Coefficient
1.9Reaction Kinetics
1.9.1Collision Theory
1.9.2Orders, Rate Constants & Equations
1.9.3Rate Graphs
1.9.4Rate Determining Step
1.9.5Maxwell-Boltzmann Distribution
1.9.6Catalysts
1.9.7Homogeneous Catalysts
1.9.8Heterogeneous Catalysts
1.9.9End of Topic Test - Kinetics
1.9.10End of Topic Test - Rate Equations
1.9.11A-A* (AO2/3) - Rate Equations
2Inorganic Chemistry
2.1The Periodic Table
2.2Group 2
2.3Group 17
2.4Transition Metals
3Organic Chemistry & Analysis
3.1Introduction to Organic Chemistry
3.2Hydrocarbons
3.2.1Fractional Distillation
3.2.2Cracking
3.2.3Combustion
3.2.4Chlorination
3.2.5End of Topic Test - Alkanes
3.2.6Introduction to Alkenes
3.2.7Reactions of Alkenes
3.2.8Polymerisation Reactions
3.2.9End of Topic Test - Alkenes
3.2.10Arenes
3.2.11Evidence for Structure of Arenes
3.2.12Reactions of Benzene
3.2.13End of Topic Test -Arenes
3.3Halogen Derivatives
3.4Hydroxy Compounds
3.5Carbonyl Compounds
3.6Carboxylic Acids & Derivatives
3.7Nitrogen Compounds
3.8Polymerisation
3.9Analytical Techniques
3.9.1Chromatography
3.9.2High-Performance Liquid Chromatography
3.9.3Gas Chromatography
3.9.4IR Spectroscopy
3.9.5Uses of IR Spectroscopy
3.9.6Mass Spectrometry
3.9.7Mass Spectrometry Analysis
3.9.8Nuclear Magnetic Resonance
3.9.9Carbon-13 NMR
3.9.10Proton NMR I
3.9.11Proton NMR II
3.9.12End of Topic Test - Analytical Techniques
3.9.13A-A* (AO2/3) - Analytical Techniques
Jump to other topics
1Physical Chemistry
1.1Atoms, Molecules & Stoichiometry
1.2Atomic Structure
1.2.1Fundamental Particles
1.2.2Isotopes & Mass Number
1.2.3Electron Shells, Sub-Shells & Orbitals
1.2.4Electron Configuration
1.2.5Ionisation Energy
1.2.6Factors Affecting Ionisation Energies
1.2.7Trends of Ionisation
1.2.8Specific Impacts on Ionisation Energies
1.2.9Electron Affinity
1.2.10End of Topic Test - Atomic Structure
1.2.11A-A* (AO2/3) - Atomic Structure
1.3Chemical Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Shapes of Molecules
1.3.4Intermolecular Forces
1.3.5Intermolecular Forces 2
1.3.6Electronegativity
1.3.7Bond Length, Bond Energy, & Bond Polarity
1.3.8Metallic Bonding
1.3.9Physical Properties
1.3.10End of Topic Test - Bonding
1.3.11A-A* (AO2/3) - Bonding
1.4States of Matter
1.5Chemical Energetics
1.6Electrochemistry
1.7Equilibria
1.7.1Dynamic Equilibrium & Le Chatelier
1.7.2Kc
1.7.3Kp
1.7.4pH
1.7.5The Ionic Product of Water
1.7.6Weak Acids & Bases
1.7.7Introduction to Solubility Equilibria
1.7.8Solubility Equilibria Calculations
1.7.9Free Energy of Dissolution
1.7.10pH and Solubility
1.7.11Common-Ion Effect
1.7.12End of Topic Test - Kp & Electrochemistry
1.7.13A-A* (AO2/3) - Electrochemical Cells
1.8Partition Coefficient
1.9Reaction Kinetics
1.9.1Collision Theory
1.9.2Orders, Rate Constants & Equations
1.9.3Rate Graphs
1.9.4Rate Determining Step
1.9.5Maxwell-Boltzmann Distribution
1.9.6Catalysts
1.9.7Homogeneous Catalysts
1.9.8Heterogeneous Catalysts
1.9.9End of Topic Test - Kinetics
1.9.10End of Topic Test - Rate Equations
1.9.11A-A* (AO2/3) - Rate Equations
2Inorganic Chemistry
2.1The Periodic Table
2.2Group 2
2.3Group 17
2.4Transition Metals
3Organic Chemistry & Analysis
3.1Introduction to Organic Chemistry
3.2Hydrocarbons
3.2.1Fractional Distillation
3.2.2Cracking
3.2.3Combustion
3.2.4Chlorination
3.2.5End of Topic Test - Alkanes
3.2.6Introduction to Alkenes
3.2.7Reactions of Alkenes
3.2.8Polymerisation Reactions
3.2.9End of Topic Test - Alkenes
3.2.10Arenes
3.2.11Evidence for Structure of Arenes
3.2.12Reactions of Benzene
3.2.13End of Topic Test -Arenes
3.3Halogen Derivatives
3.4Hydroxy Compounds
3.5Carbonyl Compounds
3.6Carboxylic Acids & Derivatives
3.7Nitrogen Compounds
3.8Polymerisation
3.9Analytical Techniques
3.9.1Chromatography
3.9.2High-Performance Liquid Chromatography
3.9.3Gas Chromatography
3.9.4IR Spectroscopy
3.9.5Uses of IR Spectroscopy
3.9.6Mass Spectrometry
3.9.7Mass Spectrometry Analysis
3.9.8Nuclear Magnetic Resonance
3.9.9Carbon-13 NMR
3.9.10Proton NMR I
3.9.11Proton NMR II
3.9.12End of Topic Test - Analytical Techniques
3.9.13A-A* (AO2/3) - Analytical Techniques
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books