2.4.6
Colours of Ions
d Sub-Shell Splitting
d Sub-Shell Splitting
The colour of transition metals ions depends on their ligands and their geometries.
,h_400,q_80,w_640.jpg)
,h_400,q_80,w_640.jpg)
Splitting
Splitting
- Without ligands, all of the d orbitals have the same energy.
- In the presence of ligands, the orbitals will split. Some of them gain energy, and some of them lose energy.
- This is shown in the following diagram.
- The difference in energy of the upper level and the lower level is given the symbol ΔE.


Light absorption
Light absorption
- Electrons will occupy the lower energy orbitals first. This is called the ground electronic state of the ion.
- If an electron absorbs energy equal to the energy gap, it can move to occupy the higher energy orbitals. This is called an excited electronic state.
- Electrons will absorb frequencies of light that contain enough energy to jump the energy gap.
- This is shown pictorially on the next slide.


Calculating the energy gap
Calculating the energy gap
- You can calculate the energy gap from the wavelength of absorbed light by using the following formula:
- ν is the frequency of light in hertz, h is planck’s constant (which will be given if you need it), c is the speed of light in ms-1 and λ is the wavelength of the light in metres.
- The energy gap depends on the metal ion, it's oxidation state, it's ligands, and also it's coordination number.
Colours of Transition Metal Ions
Colours of Transition Metal Ions
The colour of a transition metal ion depends on the colour of the light it absorbs.


Absorption process
Absorption process
- When a transition metal ion is in light, it will absorb the frequencies which correspond to the d sub-shell energy gap.
- The rest of the frequencies will be reflected.
- You only see the reflected light.


Absorption example
Absorption example
- Suppose you have a metal complex which absorbs red light.
- The red light is removed from the light you can see.
- You see the rest of the colours in the spectrum.
- So the complex appears blue.
- Metal ions that absorb red light do NOT appear red, because there’s no red light for you to see.


Identifying metal ions
Identifying metal ions
- Every transition metal ion will be a different colour with different ligands.
- But we can identify all the hexaaqua ions (the ones with six water ligands), and we also know the colours of some other specific ones.
- The ones you need to know are on the next slide.


Iron(III) in solution
Iron(III) in solution
- On the previous slide, we gave you the colours of certain ions. While these colours are true, you might not always observe them.
- Iron(III) in solution usually appears yellow or orange if its concentrated.
- This is because hexaaqua iron(III) is quite acidic, and will lose protons to become Fe(H2O)5(OH-) (and this is yellow).
- If you’re asked what colour hexaaqua iron(III) is, you should say purple. Just be aware that if it's in solution, you’ll have a yellow solution.
- We’ll talk about the acidic properties in a later module.
Spectroscopy
Spectroscopy
You can use the colour of ions to find their concentrations. This uses a technique called spectroscopy.


Principles of spectroscopy
Principles of spectroscopy
- You can shine white light through a coloured filter to remove everything but that colour of light.
- You can then let this light fall on a sample of a transition metal solution.
- The more light it absorbs, the higher the concentration of the solution.
- We can compare the amount of light absorbed to a calibration curve (this is explained on the next slide).


Calibration curves
Calibration curves
- When doing spectroscopy, we can’t calculate the concentration of a sample without comparing it to known concentrations.
- We first measure the absorbances of solutions whose concentrations we know. Then we plot these on a graph.
- This graph is called a calibration curve. An example is on the next slide.
- We then use the absorbance of the unknown sample to work out from the graph what its concentration is.


1Physical Chemistry
1.1Atoms, Molecules & Stoichiometry
1.2Atomic Structure
1.2.1Fundamental Particles
1.2.2Isotopes & Mass Number
1.2.3Electron Shells, Sub-Shells & Orbitals
1.2.4Electron Configuration
1.2.5Ionisation Energy
1.2.6Factors Affecting Ionisation Energies
1.2.7Trends of Ionisation
1.2.8Specific Impacts on Ionisation Energies
1.2.9Electron Affinity
1.2.10End of Topic Test - Atomic Structure
1.2.11A-A* (AO2/3) - Atomic Structure
1.3Chemical Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Shapes of Molecules
1.3.4Intermolecular Forces
1.3.5Intermolecular Forces 2
1.3.6Electronegativity
1.3.7Bond Length, Bond Energy, & Bond Polarity
1.3.8Metallic Bonding
1.3.9Physical Properties
1.3.10End of Topic Test - Bonding
1.3.11A-A* (AO2/3) - Bonding
1.4States of Matter
1.5Chemical Energetics
1.6Electrochemistry
1.7Equilibria
1.7.1Dynamic Equilibrium & Le Chatelier
1.7.2Kc
1.7.3Kp
1.7.4pH
1.7.5The Ionic Product of Water
1.7.6Weak Acids & Bases
1.7.7Introduction to Solubility Equilibria
1.7.8Solubility Equilibria Calculations
1.7.9Free Energy of Dissolution
1.7.10pH and Solubility
1.7.11Common-Ion Effect
1.7.12End of Topic Test - Kp & Electrochemistry
1.7.13A-A* (AO2/3) - Electrochemical Cells
1.8Partition Coefficient
1.9Reaction Kinetics
1.9.1Collision Theory
1.9.2Orders, Rate Constants & Equations
1.9.3Rate Graphs
1.9.4Rate Determining Step
1.9.5Maxwell-Boltzmann Distribution
1.9.6Catalysts
1.9.7Homogeneous Catalysts
1.9.8Heterogeneous Catalysts
1.9.9End of Topic Test - Kinetics
1.9.10End of Topic Test - Rate Equations
1.9.11A-A* (AO2/3) - Rate Equations
2Inorganic Chemistry
2.1The Periodic Table
2.2Group 2
2.3Group 17
2.4Transition Metals
3Organic Chemistry & Analysis
3.1Introduction to Organic Chemistry
3.2Hydrocarbons
3.2.1Fractional Distillation
3.2.2Cracking
3.2.3Combustion
3.2.4Chlorination
3.2.5End of Topic Test - Alkanes
3.2.6Introduction to Alkenes
3.2.7Reactions of Alkenes
3.2.8Polymerisation Reactions
3.2.9End of Topic Test - Alkenes
3.2.10Arenes
3.2.11Evidence for Structure of Arenes
3.2.12Reactions of Benzene
3.2.13End of Topic Test -Arenes
3.3Halogen Derivatives
3.4Hydroxy Compounds
3.5Carbonyl Compounds
3.6Carboxylic Acids & Derivatives
3.7Nitrogen Compounds
3.8Polymerisation
3.9Analytical Techniques
3.9.1Chromatography
3.9.2High-Performance Liquid Chromatography
3.9.3Gas Chromatography
3.9.4IR Spectroscopy
3.9.5Uses of IR Spectroscopy
3.9.6Mass Spectrometry
3.9.7Mass Spectrometry Analysis
3.9.8Nuclear Magnetic Resonance
3.9.9Carbon-13 NMR
3.9.10Proton NMR I
3.9.11Proton NMR II
3.9.12End of Topic Test - Analytical Techniques
3.9.13A-A* (AO2/3) - Analytical Techniques
Jump to other topics
1Physical Chemistry
1.1Atoms, Molecules & Stoichiometry
1.2Atomic Structure
1.2.1Fundamental Particles
1.2.2Isotopes & Mass Number
1.2.3Electron Shells, Sub-Shells & Orbitals
1.2.4Electron Configuration
1.2.5Ionisation Energy
1.2.6Factors Affecting Ionisation Energies
1.2.7Trends of Ionisation
1.2.8Specific Impacts on Ionisation Energies
1.2.9Electron Affinity
1.2.10End of Topic Test - Atomic Structure
1.2.11A-A* (AO2/3) - Atomic Structure
1.3Chemical Bonding
1.3.1Ionic Bonding
1.3.2Covalent & Dative Bonding
1.3.3Shapes of Molecules
1.3.4Intermolecular Forces
1.3.5Intermolecular Forces 2
1.3.6Electronegativity
1.3.7Bond Length, Bond Energy, & Bond Polarity
1.3.8Metallic Bonding
1.3.9Physical Properties
1.3.10End of Topic Test - Bonding
1.3.11A-A* (AO2/3) - Bonding
1.4States of Matter
1.5Chemical Energetics
1.6Electrochemistry
1.7Equilibria
1.7.1Dynamic Equilibrium & Le Chatelier
1.7.2Kc
1.7.3Kp
1.7.4pH
1.7.5The Ionic Product of Water
1.7.6Weak Acids & Bases
1.7.7Introduction to Solubility Equilibria
1.7.8Solubility Equilibria Calculations
1.7.9Free Energy of Dissolution
1.7.10pH and Solubility
1.7.11Common-Ion Effect
1.7.12End of Topic Test - Kp & Electrochemistry
1.7.13A-A* (AO2/3) - Electrochemical Cells
1.8Partition Coefficient
1.9Reaction Kinetics
1.9.1Collision Theory
1.9.2Orders, Rate Constants & Equations
1.9.3Rate Graphs
1.9.4Rate Determining Step
1.9.5Maxwell-Boltzmann Distribution
1.9.6Catalysts
1.9.7Homogeneous Catalysts
1.9.8Heterogeneous Catalysts
1.9.9End of Topic Test - Kinetics
1.9.10End of Topic Test - Rate Equations
1.9.11A-A* (AO2/3) - Rate Equations
2Inorganic Chemistry
2.1The Periodic Table
2.2Group 2
2.3Group 17
2.4Transition Metals
3Organic Chemistry & Analysis
3.1Introduction to Organic Chemistry
3.2Hydrocarbons
3.2.1Fractional Distillation
3.2.2Cracking
3.2.3Combustion
3.2.4Chlorination
3.2.5End of Topic Test - Alkanes
3.2.6Introduction to Alkenes
3.2.7Reactions of Alkenes
3.2.8Polymerisation Reactions
3.2.9End of Topic Test - Alkenes
3.2.10Arenes
3.2.11Evidence for Structure of Arenes
3.2.12Reactions of Benzene
3.2.13End of Topic Test -Arenes
3.3Halogen Derivatives
3.4Hydroxy Compounds
3.5Carbonyl Compounds
3.6Carboxylic Acids & Derivatives
3.7Nitrogen Compounds
3.8Polymerisation
3.9Analytical Techniques
3.9.1Chromatography
3.9.2High-Performance Liquid Chromatography
3.9.3Gas Chromatography
3.9.4IR Spectroscopy
3.9.5Uses of IR Spectroscopy
3.9.6Mass Spectrometry
3.9.7Mass Spectrometry Analysis
3.9.8Nuclear Magnetic Resonance
3.9.9Carbon-13 NMR
3.9.10Proton NMR I
3.9.11Proton NMR II
3.9.12End of Topic Test - Analytical Techniques
3.9.13A-A* (AO2/3) - Analytical Techniques
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books