6.2.6
Compund Interest
Compound Interest
Compound Interest
In summer, the number of ants in a colony increases by 20% each day. On the first day there are 10,000 ants. How many days until the colony numbers more than 30,000?
The formula for compound interest
The formula for compound interest
- N is the number of ants
- n is the number of days passed
Answer
Answer
- This is the first day we are over 30 000 so the answer is 7 days.
Number of ants per hour
Number of ants per hour
- By using the rule for raising a power to another power, we can convert the multiplier for the growth after days into one that shows the growth every hour
- This way we see that there is a 0.8% increase in the number of ants every hour.
1Proof
1.1Types of Numbers
1.2Notation
2Algebra & Functions
2.1Powers & Roots
2.2Quadratic Equations
2.3Inequalities
2.4Polynomials
2.5Graphs
2.7Transformation of Graphs
3Coordinate Geometry
3.1Straight Lines
3.2Circles
3.2.1Equations of Circles centred at Origin
3.2.2Finding the Centre & Radius
3.2.3Equation of a Tangent
3.2.4Circle Theorems - Perpendicular Bisector
3.2.5Circle Theorems - Angle at the Centre
3.2.6Circle Theorems - Angle at a Semi-Circle
3.2.7Equation of a Perpendicular Bisector
3.2.8Equation of a Circumcircle
3.2.9Circumcircle of a Right-angled Triangle
3.3Parametric Equations (A2 only)
4Sequences & Series
4.1Binomial Expansion
5Trigonometry
5.2Trigonometric Functions
5.3Triangle Rules
6Exponentials & Logarithms
6.1Exponentials & Logarithms
7Differentiation
7.1Derivatives
7.2Graphs & Differentiation
7.3Differentiation With Trigonometry and Exponentials
7.4Rules of Differetiation (A2 only)
7.5Parametric & Implicit Differentiation
8Integration
8.1Integration
9Numerical Methods
9.1Finding Solutions
9.2Finding the Area
10Vectors
10.12D Vectors
10.23D Vectors
10.3Vector Proofs
Jump to other topics
1Proof
1.1Types of Numbers
1.2Notation
2Algebra & Functions
2.1Powers & Roots
2.2Quadratic Equations
2.3Inequalities
2.4Polynomials
2.5Graphs
2.7Transformation of Graphs
3Coordinate Geometry
3.1Straight Lines
3.2Circles
3.2.1Equations of Circles centred at Origin
3.2.2Finding the Centre & Radius
3.2.3Equation of a Tangent
3.2.4Circle Theorems - Perpendicular Bisector
3.2.5Circle Theorems - Angle at the Centre
3.2.6Circle Theorems - Angle at a Semi-Circle
3.2.7Equation of a Perpendicular Bisector
3.2.8Equation of a Circumcircle
3.2.9Circumcircle of a Right-angled Triangle
3.3Parametric Equations (A2 only)
4Sequences & Series
4.1Binomial Expansion
5Trigonometry
5.2Trigonometric Functions
5.3Triangle Rules
6Exponentials & Logarithms
6.1Exponentials & Logarithms
7Differentiation
7.1Derivatives
7.2Graphs & Differentiation
7.3Differentiation With Trigonometry and Exponentials
7.4Rules of Differetiation (A2 only)
7.5Parametric & Implicit Differentiation
8Integration
8.1Integration
9Numerical Methods
9.1Finding Solutions
9.2Finding the Area
10Vectors
10.12D Vectors
10.23D Vectors
10.3Vector Proofs
Unlock your full potential with GoStudent tutoring
Affordable 1:1 tutoring from the comfort of your home
Tutors are matched to your specific learning needs
30+ school subjects covered