5.2.6
Small Angle Approximation
Small Angle Approximation
Small Angle Approximation
We can approximate the values of trigonometric functions when the angle is very small in order to simplify calculations. We call these the small angle approximations.
Sine approximation
Sine approximation
- When the angle is close to zero and measured in radians, we can approximate the sine of this angle as:
Cosine approximation
Cosine approximation
- When the angle is close to zero and measured in radians, we can approximate the cosine of this angle as:
Tangent approximation
Tangent approximation
- When the angle is close to zero and measured in radians, we can approximate the tangent of this angle as:
Example
Example
- What is the approximation of the following expression when is small?
- What is the approximate value of the expression when is small?
Approximations
Approximations
- When is small, and .
- That means we can say that:
Substitute approximations in
Substitute approximations in
- Substituting these approximations in, we have:
- Simplifying this expression gives:
Approximate value
Approximate value
- When is small, any terms with factors of will also be small.
- That means we can disregard these terms when finding the value of the expression:
1Proof
1.1Types of Numbers
1.2Notation
2Algebra & Functions
2.1Powers & Roots
2.2Quadratic Equations
2.3Inequalities
2.4Polynomials
2.5Graphs
2.7Transformation of Graphs
3Coordinate Geometry
3.1Straight Lines
3.2Circles
3.2.1Equations of Circles centred at Origin
3.2.2Finding the Centre & Radius
3.2.3Equation of a Tangent
3.2.4Circle Theorems - Perpendicular Bisector
3.2.5Circle Theorems - Angle at the Centre
3.2.6Circle Theorems - Angle at a Semi-Circle
3.2.7Equation of a Perpendicular Bisector
3.2.8Equation of a Circumcircle
3.2.9Circumcircle of a Right-angled Triangle
3.3Parametric Equations (A2 only)
4Sequences & Series
4.1Binomial Expansion
5Trigonometry
5.2Trigonometric Functions
5.3Triangle Rules
6Exponentials & Logarithms
6.1Exponentials & Logarithms
7Differentiation
7.1Derivatives
7.2Graphs & Differentiation
7.3Differentiation With Trigonometry and Exponentials
7.4Rules of Differetiation (A2 only)
7.5Parametric & Implicit Differentiation
8Integration
8.1Integration
9Numerical Methods
9.1Finding Solutions
9.2Finding the Area
10Vectors
10.12D Vectors
10.23D Vectors
10.3Vector Proofs
Jump to other topics
1Proof
1.1Types of Numbers
1.2Notation
2Algebra & Functions
2.1Powers & Roots
2.2Quadratic Equations
2.3Inequalities
2.4Polynomials
2.5Graphs
2.7Transformation of Graphs
3Coordinate Geometry
3.1Straight Lines
3.2Circles
3.2.1Equations of Circles centred at Origin
3.2.2Finding the Centre & Radius
3.2.3Equation of a Tangent
3.2.4Circle Theorems - Perpendicular Bisector
3.2.5Circle Theorems - Angle at the Centre
3.2.6Circle Theorems - Angle at a Semi-Circle
3.2.7Equation of a Perpendicular Bisector
3.2.8Equation of a Circumcircle
3.2.9Circumcircle of a Right-angled Triangle
3.3Parametric Equations (A2 only)
4Sequences & Series
4.1Binomial Expansion
5Trigonometry
5.2Trigonometric Functions
5.3Triangle Rules
6Exponentials & Logarithms
6.1Exponentials & Logarithms
7Differentiation
7.1Derivatives
7.2Graphs & Differentiation
7.3Differentiation With Trigonometry and Exponentials
7.4Rules of Differetiation (A2 only)
7.5Parametric & Implicit Differentiation
8Integration
8.1Integration
9Numerical Methods
9.1Finding Solutions
9.2Finding the Area
10Vectors
10.12D Vectors
10.23D Vectors
10.3Vector Proofs
Unlock your full potential with GoStudent tutoring
Affordable 1:1 tutoring from the comfort of your home
Tutors are matched to your specific learning needs
30+ school subjects covered