5.4.2
Pythagorean Identities
The Pythagorean Identity
The Pythagorean Identity
The definition of the unit circle gives rise to an important identity involving the trigonometric functions.


Unit circle
Unit circle
- We defined the coordinates of the unit circle as being given by the functions:
- and
- Any point that lies on a circle is exactly one radius in distance away from the center of the circle.
- This is equal to one for the unit circle.


Proof
Proof
- By Pythagoras' theorem, we can write:
- Squaring both sides and using the notation gives the Pythagorean identity:


Tan and sec identity
Tan and sec identity
- Dividing the Pythagorean identity through by we have:
- We can then substitute the reciprocal identities as:


Cot and cosec identity
Cot and cosec identity
- Dividing the Pythagorean identity through by we have:
- We can then substitute the reciprocal identities as:
1Proof
1.1Types of Numbers
1.2Notation
2Algebra & Functions
2.1Powers & Roots
2.2Quadratic Equations
2.3Inequalities
2.4Polynomials
2.5Graphs
2.7Transformation of Graphs
3Coordinate Geometry
3.1Straight Lines
3.2Circles
3.2.1Equations of Circles centred at Origin
3.2.2Finding the Centre & Radius
3.2.3Equation of a Tangent
3.2.4Circle Theorems - Perpendicular Bisector
3.2.5Circle Theorems - Angle at the Centre
3.2.6Circle Theorems - Angle at a Semi-Circle
3.2.7Equation of a Perpendicular Bisector
3.2.8Equation of a Circumcircle
3.2.9Circumcircle of a Right-angled Triangle
3.3Parametric Equations (A2 only)
4Sequences & Series
4.1Binomial Expansion
5Trigonometry
5.2Trigonometric Functions
5.3Triangle Rules
6Exponentials & Logarithms
6.1Exponentials & Logarithms
7Differentiation
7.1Derivatives
7.2Graphs & Differentiation
7.3Differentiation With Trigonometry and Exponentials
7.4Rules of Differetiation (A2 only)
7.5Parametric & Implicit Differentiation
8Integration
8.1Integration
9Numerical Methods
9.1Finding Solutions
9.2Finding the Area
10Vectors
10.12D Vectors
10.23D Vectors
10.3Vector Proofs
Jump to other topics
1Proof
1.1Types of Numbers
1.2Notation
2Algebra & Functions
2.1Powers & Roots
2.2Quadratic Equations
2.3Inequalities
2.4Polynomials
2.5Graphs
2.7Transformation of Graphs
3Coordinate Geometry
3.1Straight Lines
3.2Circles
3.2.1Equations of Circles centred at Origin
3.2.2Finding the Centre & Radius
3.2.3Equation of a Tangent
3.2.4Circle Theorems - Perpendicular Bisector
3.2.5Circle Theorems - Angle at the Centre
3.2.6Circle Theorems - Angle at a Semi-Circle
3.2.7Equation of a Perpendicular Bisector
3.2.8Equation of a Circumcircle
3.2.9Circumcircle of a Right-angled Triangle
3.3Parametric Equations (A2 only)
4Sequences & Series
4.1Binomial Expansion
5Trigonometry
5.2Trigonometric Functions
5.3Triangle Rules
6Exponentials & Logarithms
6.1Exponentials & Logarithms
7Differentiation
7.1Derivatives
7.2Graphs & Differentiation
7.3Differentiation With Trigonometry and Exponentials
7.4Rules of Differetiation (A2 only)
7.5Parametric & Implicit Differentiation
8Integration
8.1Integration
9Numerical Methods
9.1Finding Solutions
9.2Finding the Area
10Vectors
10.12D Vectors
10.23D Vectors
10.3Vector Proofs

Unlock your full potential with GoStudent tutoring
Affordable 1:1 tutoring from the comfort of your home
Tutors are matched to your specific learning needs
30+ school subjects covered