7.1.9
Thermal Energy Transfer Experiments
Heat Capacity Experiment
Heat Capacity Experiment
Two ways in which heat transfer changes materials are by changing the temperature of an object and by changing the state of an object.


Equipment
Equipment
- This diagram shows the simple electrical heater method of finding the specific heat capacity, c, of a material.


Equipment 2
Equipment 2
- Make sure that the heater is fully submerged into the material and that you check the mass of the block, m, with a balance.
- There should be an ammeter and a voltmeter in the electrical circuit to make sure that the current and p.d. for the heater do not change.
- The thermometer measures the initial temperature, T1, of the material and the temperature after every minute.


Method
Method
- If you record the temperature at the start and after every minute, you can plot a temperature-time graph.
- The graph will be shallow at first because it takes time for the block to heat the thermometer.
- Once the graph has got to its steepest, you can draw the tangent to the curve.


Result
Result
- The input power of the heater, IV, must equal mc × gradient.
- So the specific heat capacity can be found by c = IV/mass × (temperature-time graph gradient).
- This result ignores the effect of the apparatus heating the rest of the room. It also ignores the fact that the heating effect is not constant throughout the experiment.
Method of Continuous Flow
Method of Continuous Flow
A much more accurate way of finding the specific heat capacity of a fluid is the method of continuous flow.


Apparatus
Apparatus
- By using apparatus as shown in the diagram, you can measure the temperature at the left hand thermometer, Ta, and at the right hand thermometer, Tb.
- When the electrical heater is switched on, Tb increases until thermal equilibrium is reached.


Equation
Equation
- At this point, the heat energy supplied by the heater per unit time is equal to the sum of the internal energy gained by the water plus the heat energy lost by the water to the surroundings.
- V1 I1 = m1 cwater (Tb - Ta) + H
- Where m1 is the mass of water passing through the apparatus per unit time.


Second equation
Second equation
- If the flow rate is changed and the electrical heater parameters changed so that the start and finish temperatures remain constant, then we get a second equation:
- V2 I2 = m2 cwater (Tb - Ta) + H.
- As the temperature profile of the apparatus is the same on both occasions, the heat energy supplied to the surroundings, H will be the same.


Combination
Combination
- This means that equation 1 and equation 2 can be combined to give an expression for cwater
- V2 I2 - V1 I1 = (m2 - m1) cwater (Tb - Ta)
- So cwater = (V2 I2 - V1 I1)/(m2 - m1)(Tb - Ta)
- The advantage of this method over the ‘heater in a beaker’ method is that the heat loss to the surroundings can be factored out. This means you can get a value closer to the true value.


Types of latent heat
Types of latent heat
- Most materials have two specific latent heats.
- Specific latent heat of melting (or fusion) for the solid to liquid phase transition.
- Specific latent heat of vapourisation for the liquid to gas phase transition.
- In either case, the amount of heat supplied, , where l is the specific latent heat and Δm is the mass of the material that changes phase.
1Physical Quantities & Units
2Measurement Techniques
3Kinematics
4Dynamics
4.1Momentum & Newton's Laws of Motion
4.2Non-Uniform Motion
4.3Linear Momentum & Conservation
4.4Force, Density & Pressure
4.4.1Fields
4.4.2Force in Uniform Fields
4.4.3Friction
4.4.4Buoyancy
4.4.5Terminal Speed
4.4.6End of Topic Test - Acceleration Due to Gravity
4.4.7Centre of Mass
4.4.8Forces & Equilibrium
4.4.9End of Topic Test - Scalars & Vectors
4.4.10Moments
4.4.11End of Topic Test - Moments & Centre of Mass
4.4.12Density
4.4.13Pressure
4.5Work, Energy & Power
5Gravitational Fields
5.1Gravitational Fields (A2 only)
6Deformation of Solids
7Thermal Physics
7.1Thermal Physics
7.1.1Temperature
7.1.2Measuring Temperature
7.1.3Ideal Gas Law
7.1.4Ideal Gases
7.1.5Boyle's Law & Charles' Law
7.1.6Molecular Kinetic Theory Model
7.1.7Molecular Kinetic Theory Model 2
7.1.8Thermal Energy Transfer
7.1.9Thermal Energy Transfer Experiments
7.1.10End of Topic Test - Thermal Energy & Ideal Gases
7.1.11First Law of Thermodynamics
8Oscillations
8.1Simple Harmonic Motion
8.2Waves
8.2.1Progressive Waves
8.2.2Intensity of Waves
8.2.3Wave Speed & Phase Difference
8.2.4Longitudinal & Transverse Waves
8.2.5End of Topic Test - Progressive Waves
8.2.6Electromagnetic Waves
8.2.7Doppler Effect
8.2.8Sound Waves
8.2.9Measuring Sound Waves
8.2.10End of Topic Test - Waves
8.2.11Ultrasound Imaging
8.2.12Ultrasound Imaging 2
9Communication
9.1Communication Channels
9.2Digital Communication
10Electric Fields
10.1Electric Fields
11Current Electricity
11.1Current Electricity
11.1.1Basics of Electricity
11.1.2Mean Drift Velocity
11.1.3Current-Voltage Characteristics
11.1.4End of Topic Test - Basics of Electricity
11.1.5Resistivity
11.1.6End of Topic Test - Resistivity & Superconductors
11.1.7Power and Conservation
11.1.8Microphones
11.1.9Components
11.1.10Relays
11.1.11Strain Gauges
12Magnetic Fields
12.1Magnetic Fields
13Modern Physics
13.1Quantum Physics
13.1.1The Photoelectric Effect
13.1.2The Photoelectric Effect Explanation
13.1.3End of Topic Test - The Photoelectric Effect
13.1.4Collisions of Electrons with Atoms
13.1.5Energy Levels & Photon Emission
13.1.6Wave-Particle Duality
13.1.7End of Topic Test - Absorption & Emission
13.1.8Band Theory
13.1.9Diagnostic X-Rays
13.1.10X-Ray Image Processing
13.1.11Absorption of X-Rays
13.1.12CT Scanners
13.2Nuclear Physics
13.2.1Rutherford Scattering
13.2.2Atomic Model
13.2.3Isotopes
13.2.4Stable & Unstable Nuclei
13.2.5A-A* (AO3/4) - Stable & Unstable Nuclei
13.2.6Alpha & Beta Radiation
13.2.7Gamma Radiation
13.2.8Particles, Antiparticles & Photons
13.2.9Quarks & Antiquarks
13.2.10Particle Interactions
13.2.11Radioactive Decay
13.2.12Half Life
13.2.13End of Topic Test - Radioactivity
13.2.14Nuclear Instability
13.2.15Mass & Energy
13.2.16Binding Energy
13.2.17A-A* (AO3/4) - Nuclear Fusion
Jump to other topics
1Physical Quantities & Units
2Measurement Techniques
3Kinematics
4Dynamics
4.1Momentum & Newton's Laws of Motion
4.2Non-Uniform Motion
4.3Linear Momentum & Conservation
4.4Force, Density & Pressure
4.4.1Fields
4.4.2Force in Uniform Fields
4.4.3Friction
4.4.4Buoyancy
4.4.5Terminal Speed
4.4.6End of Topic Test - Acceleration Due to Gravity
4.4.7Centre of Mass
4.4.8Forces & Equilibrium
4.4.9End of Topic Test - Scalars & Vectors
4.4.10Moments
4.4.11End of Topic Test - Moments & Centre of Mass
4.4.12Density
4.4.13Pressure
4.5Work, Energy & Power
5Gravitational Fields
5.1Gravitational Fields (A2 only)
6Deformation of Solids
7Thermal Physics
7.1Thermal Physics
7.1.1Temperature
7.1.2Measuring Temperature
7.1.3Ideal Gas Law
7.1.4Ideal Gases
7.1.5Boyle's Law & Charles' Law
7.1.6Molecular Kinetic Theory Model
7.1.7Molecular Kinetic Theory Model 2
7.1.8Thermal Energy Transfer
7.1.9Thermal Energy Transfer Experiments
7.1.10End of Topic Test - Thermal Energy & Ideal Gases
7.1.11First Law of Thermodynamics
8Oscillations
8.1Simple Harmonic Motion
8.2Waves
8.2.1Progressive Waves
8.2.2Intensity of Waves
8.2.3Wave Speed & Phase Difference
8.2.4Longitudinal & Transverse Waves
8.2.5End of Topic Test - Progressive Waves
8.2.6Electromagnetic Waves
8.2.7Doppler Effect
8.2.8Sound Waves
8.2.9Measuring Sound Waves
8.2.10End of Topic Test - Waves
8.2.11Ultrasound Imaging
8.2.12Ultrasound Imaging 2
9Communication
9.1Communication Channels
9.2Digital Communication
10Electric Fields
10.1Electric Fields
11Current Electricity
11.1Current Electricity
11.1.1Basics of Electricity
11.1.2Mean Drift Velocity
11.1.3Current-Voltage Characteristics
11.1.4End of Topic Test - Basics of Electricity
11.1.5Resistivity
11.1.6End of Topic Test - Resistivity & Superconductors
11.1.7Power and Conservation
11.1.8Microphones
11.1.9Components
11.1.10Relays
11.1.11Strain Gauges
12Magnetic Fields
12.1Magnetic Fields
13Modern Physics
13.1Quantum Physics
13.1.1The Photoelectric Effect
13.1.2The Photoelectric Effect Explanation
13.1.3End of Topic Test - The Photoelectric Effect
13.1.4Collisions of Electrons with Atoms
13.1.5Energy Levels & Photon Emission
13.1.6Wave-Particle Duality
13.1.7End of Topic Test - Absorption & Emission
13.1.8Band Theory
13.1.9Diagnostic X-Rays
13.1.10X-Ray Image Processing
13.1.11Absorption of X-Rays
13.1.12CT Scanners
13.2Nuclear Physics
13.2.1Rutherford Scattering
13.2.2Atomic Model
13.2.3Isotopes
13.2.4Stable & Unstable Nuclei
13.2.5A-A* (AO3/4) - Stable & Unstable Nuclei
13.2.6Alpha & Beta Radiation
13.2.7Gamma Radiation
13.2.8Particles, Antiparticles & Photons
13.2.9Quarks & Antiquarks
13.2.10Particle Interactions
13.2.11Radioactive Decay
13.2.12Half Life
13.2.13End of Topic Test - Radioactivity
13.2.14Nuclear Instability
13.2.15Mass & Energy
13.2.16Binding Energy
13.2.17A-A* (AO3/4) - Nuclear Fusion
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books