13.1.2
The Photoelectric Effect Explanation
Einstein's Photon Model
Einstein's Photon Model
Albert Einstein came up with an explanation for the photoelectric effect. Einstein suggested that light was made up of little packets of energy called photons.


One-on-one interaction
One-on-one interaction
- Einstein suggested that each photon had a one-on-one interaction with an electron.
- The electron absorbs all the energy of one photon.
- This explained why the maximum kinetic energy is independent of the intensity.
- Intensity is the number of photons arriving per second.
- It doesn't matter how many photons arrive per second because the electron only interacts with one.


Energy depends on frequency
Energy depends on frequency
- Einstein also suggested that the energy of a photon is proportional to its frequency. This relationship is described in the following equation:
- The constant of proportionality is the Planck constant, h.
- This explained why the maximum kinetic energy of the emitted electrons is proportional to frequency.
- The higher the frequency of a photon, the more energy is transferred to an electron.
Consequences of the Photon Model
Consequences of the Photon Model
Einstein's photon model helped explain the photoelectric effect.


Work function
Work function
- For an electron to leave a metal surface, it needs to overcome the bonds holding it down.
- The energy needed to break these bonds is called the work function, φ.
- The work function is different for different metals.


Threshold frequency
Threshold frequency
- We can use the threshold frequency to work out the work function of a particular metal and vice versa.
- The energy of a photon at the threshold will equal the energy needed to break the electron free from the metal (i.e. the work function).
- So
- And so threshold frequency,


Photoelectric equation
Photoelectric equation
- Consider the conservation of energy.
- The electron absorbs energy from a photon.
- The electron must lose at least the energy needed to break it free from the bonds in the metal, the work function .
- The maximum kinetic energy of an electron is given by the photoelectric equation:
- Remember that the maximum velocity of the electron can be found from:


Stopping potential
Stopping potential
- Measuring the stopping potential, Vs, can help us work out the maximum kinetic energy, .
- After the electrons are emitted, they pass through an electric potential.
- As the electrons are charged, they must do work, e × Vs, to move through this potential.
- The electrons will stop if all their kinetic energy is used up doing work against the potential.
- So the equation for stopping potential is:
1Physical Quantities & Units
2Measurement Techniques
3Kinematics
4Dynamics
4.1Momentum & Newton's Laws of Motion
4.2Non-Uniform Motion
4.3Linear Momentum & Conservation
4.4Force, Density & Pressure
4.4.1Fields
4.4.2Force in Uniform Fields
4.4.3Friction
4.4.4Buoyancy
4.4.5Terminal Speed
4.4.6End of Topic Test - Acceleration Due to Gravity
4.4.7Centre of Mass
4.4.8Forces & Equilibrium
4.4.9End of Topic Test - Scalars & Vectors
4.4.10Moments
4.4.11End of Topic Test - Moments & Centre of Mass
4.4.12Density
4.4.13Pressure
4.5Work, Energy & Power
5Gravitational Fields
5.1Gravitational Fields (A2 only)
6Deformation of Solids
7Thermal Physics
7.1Thermal Physics
7.1.1Temperature
7.1.2Measuring Temperature
7.1.3Ideal Gas Law
7.1.4Ideal Gases
7.1.5Boyle's Law & Charles' Law
7.1.6Molecular Kinetic Theory Model
7.1.7Molecular Kinetic Theory Model 2
7.1.8Thermal Energy Transfer
7.1.9Thermal Energy Transfer Experiments
7.1.10End of Topic Test - Thermal Energy & Ideal Gases
7.1.11First Law of Thermodynamics
8Oscillations
8.1Simple Harmonic Motion
8.2Waves
8.2.1Progressive Waves
8.2.2Intensity of Waves
8.2.3Wave Speed & Phase Difference
8.2.4Longitudinal & Transverse Waves
8.2.5End of Topic Test - Progressive Waves
8.2.6Electromagnetic Waves
8.2.7Doppler Effect
8.2.8Sound Waves
8.2.9Measuring Sound Waves
8.2.10End of Topic Test - Waves
8.2.11Ultrasound Imaging
8.2.12Ultrasound Imaging 2
9Communication
9.1Communication Channels
9.2Digital Communication
10Electric Fields
10.1Electric Fields
11Current Electricity
11.1Current Electricity
11.1.1Basics of Electricity
11.1.2Mean Drift Velocity
11.1.3Current-Voltage Characteristics
11.1.4End of Topic Test - Basics of Electricity
11.1.5Resistivity
11.1.6End of Topic Test - Resistivity & Superconductors
11.1.7Power and Conservation
11.1.8Microphones
11.1.9Components
11.1.10Relays
11.1.11Strain Gauges
12Magnetic Fields
12.1Magnetic Fields
13Modern Physics
13.1Quantum Physics
13.1.1The Photoelectric Effect
13.1.2The Photoelectric Effect Explanation
13.1.3End of Topic Test - The Photoelectric Effect
13.1.4Collisions of Electrons with Atoms
13.1.5Energy Levels & Photon Emission
13.1.6Wave-Particle Duality
13.1.7End of Topic Test - Absorption & Emission
13.1.8Band Theory
13.1.9Diagnostic X-Rays
13.1.10X-Ray Image Processing
13.1.11Absorption of X-Rays
13.1.12CT Scanners
13.2Nuclear Physics
13.2.1Rutherford Scattering
13.2.2Atomic Model
13.2.3Isotopes
13.2.4Stable & Unstable Nuclei
13.2.5A-A* (AO3/4) - Stable & Unstable Nuclei
13.2.6Alpha & Beta Radiation
13.2.7Gamma Radiation
13.2.8Particles, Antiparticles & Photons
13.2.9Quarks & Antiquarks
13.2.10Particle Interactions
13.2.11Radioactive Decay
13.2.12Half Life
13.2.13End of Topic Test - Radioactivity
13.2.14Nuclear Instability
13.2.15Mass & Energy
13.2.16Binding Energy
13.2.17A-A* (AO3/4) - Nuclear Fusion
Jump to other topics
1Physical Quantities & Units
2Measurement Techniques
3Kinematics
4Dynamics
4.1Momentum & Newton's Laws of Motion
4.2Non-Uniform Motion
4.3Linear Momentum & Conservation
4.4Force, Density & Pressure
4.4.1Fields
4.4.2Force in Uniform Fields
4.4.3Friction
4.4.4Buoyancy
4.4.5Terminal Speed
4.4.6End of Topic Test - Acceleration Due to Gravity
4.4.7Centre of Mass
4.4.8Forces & Equilibrium
4.4.9End of Topic Test - Scalars & Vectors
4.4.10Moments
4.4.11End of Topic Test - Moments & Centre of Mass
4.4.12Density
4.4.13Pressure
4.5Work, Energy & Power
5Gravitational Fields
5.1Gravitational Fields (A2 only)
6Deformation of Solids
7Thermal Physics
7.1Thermal Physics
7.1.1Temperature
7.1.2Measuring Temperature
7.1.3Ideal Gas Law
7.1.4Ideal Gases
7.1.5Boyle's Law & Charles' Law
7.1.6Molecular Kinetic Theory Model
7.1.7Molecular Kinetic Theory Model 2
7.1.8Thermal Energy Transfer
7.1.9Thermal Energy Transfer Experiments
7.1.10End of Topic Test - Thermal Energy & Ideal Gases
7.1.11First Law of Thermodynamics
8Oscillations
8.1Simple Harmonic Motion
8.2Waves
8.2.1Progressive Waves
8.2.2Intensity of Waves
8.2.3Wave Speed & Phase Difference
8.2.4Longitudinal & Transverse Waves
8.2.5End of Topic Test - Progressive Waves
8.2.6Electromagnetic Waves
8.2.7Doppler Effect
8.2.8Sound Waves
8.2.9Measuring Sound Waves
8.2.10End of Topic Test - Waves
8.2.11Ultrasound Imaging
8.2.12Ultrasound Imaging 2
9Communication
9.1Communication Channels
9.2Digital Communication
10Electric Fields
10.1Electric Fields
11Current Electricity
11.1Current Electricity
11.1.1Basics of Electricity
11.1.2Mean Drift Velocity
11.1.3Current-Voltage Characteristics
11.1.4End of Topic Test - Basics of Electricity
11.1.5Resistivity
11.1.6End of Topic Test - Resistivity & Superconductors
11.1.7Power and Conservation
11.1.8Microphones
11.1.9Components
11.1.10Relays
11.1.11Strain Gauges
12Magnetic Fields
12.1Magnetic Fields
13Modern Physics
13.1Quantum Physics
13.1.1The Photoelectric Effect
13.1.2The Photoelectric Effect Explanation
13.1.3End of Topic Test - The Photoelectric Effect
13.1.4Collisions of Electrons with Atoms
13.1.5Energy Levels & Photon Emission
13.1.6Wave-Particle Duality
13.1.7End of Topic Test - Absorption & Emission
13.1.8Band Theory
13.1.9Diagnostic X-Rays
13.1.10X-Ray Image Processing
13.1.11Absorption of X-Rays
13.1.12CT Scanners
13.2Nuclear Physics
13.2.1Rutherford Scattering
13.2.2Atomic Model
13.2.3Isotopes
13.2.4Stable & Unstable Nuclei
13.2.5A-A* (AO3/4) - Stable & Unstable Nuclei
13.2.6Alpha & Beta Radiation
13.2.7Gamma Radiation
13.2.8Particles, Antiparticles & Photons
13.2.9Quarks & Antiquarks
13.2.10Particle Interactions
13.2.11Radioactive Decay
13.2.12Half Life
13.2.13End of Topic Test - Radioactivity
13.2.14Nuclear Instability
13.2.15Mass & Energy
13.2.16Binding Energy
13.2.17A-A* (AO3/4) - Nuclear Fusion
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books