10.2.5
Capacitor Charge
Charging a Capacitor
Charging a Capacitor
When the capacitor is charging up, the formulae (and graphs) are different.


Voltage
Voltage
- The formula for this graph is:
- Where is the final potential difference across the capacitor.


Charge
Charge
- The formula for this graph is:
- Where is the final charge across the capacitor.
Charging and Discharging a Capacitor - Experiment
Charging and Discharging a Capacitor - Experiment
We can perform an experiment to test theoretical predications about capacitors.


Safety warning
Safety warning
- Some capacitors, called electrolytic capacitors, respond badly (i.e. they can explode) if they are charged incorrectly.
- It matters which way round the terminals of the capacitor are connected to the terminals of the power supply.
- You must take care to construct charging circuits with the correct polarity.
- In practice, small non-electrolytic capacitors are often given to students for this section to avoid this.


Set up
Set up
- A circuit should be set up as in the diagram.


Method - charging
Method - charging
- Start with a discharged capacitor and the switch in position 2.
- Put the switch in position 1 and start the stopwatch simultaneously.
- Record the voltmeter and ammeter readings frequently.
- Stop the stopwatch once the p.d. has increased to about 95% of the EMF of the battery.


Method - discharging
Method - discharging
- Zero the stopwatch.
- Start the stopwatch again, simultaneously switching the switch to position 2.
- Record the voltmeter and ammeter readings frequently.
- Stop the stopwatch once the p.d. has decreased to about 5% of the EMF of the battery.


Finding the time constant
Finding the time constant
- The time constant is the time taken for the original p.d. to discharge to (1/e) times the original value.
- This happens at 37% of the original value.
- The time constant can be found by reading the time from a V-t graph directly, or multiplying the gradient of a ln(V)-t graph by (-1).


Finding the capacitance
Finding the capacitance
- Once the time constant is calculated, the capacitance is the time constant divided by the resistance of the resistor.
- Capacitance (C) = time constant (RC) ÷ resistance (R).


Obtaining quality data
Obtaining quality data
- The challenge is to read and record the p.d. reading quickly enough because the reading can change rapidly.
- The solution is to use a p.d. probe/digital voltmeter, connected to a datalogger and a computer.
- The datalogger can take values of p.d. and time simultaneously, and without any reaction time issues connected with switching the switch and starting the stopwatch at the same time.
1Physical Quantities & Units
2Measurement Techniques
3Kinematics
4Dynamics
4.1Momentum & Newton's Laws of Motion
4.2Non-Uniform Motion
4.3Linear Momentum & Conservation
4.4Force, Density & Pressure
4.4.1Fields
4.4.2Force in Uniform Fields
4.4.3Friction
4.4.4Buoyancy
4.4.5Terminal Speed
4.4.6End of Topic Test - Acceleration Due to Gravity
4.4.7Centre of Mass
4.4.8Forces & Equilibrium
4.4.9End of Topic Test - Scalars & Vectors
4.4.10Moments
4.4.11End of Topic Test - Moments & Centre of Mass
4.4.12Density
4.4.13Pressure
4.5Work, Energy & Power
5Gravitational Fields
5.1Gravitational Fields (A2 only)
6Deformation of Solids
7Thermal Physics
7.1Thermal Physics
7.1.1Temperature
7.1.2Measuring Temperature
7.1.3Ideal Gas Law
7.1.4Ideal Gases
7.1.5Boyle's Law & Charles' Law
7.1.6Molecular Kinetic Theory Model
7.1.7Molecular Kinetic Theory Model 2
7.1.8Thermal Energy Transfer
7.1.9Thermal Energy Transfer Experiments
7.1.10End of Topic Test - Thermal Energy & Ideal Gases
7.1.11First Law of Thermodynamics
8Oscillations
8.1Simple Harmonic Motion
8.2Waves
8.2.1Progressive Waves
8.2.2Intensity of Waves
8.2.3Wave Speed & Phase Difference
8.2.4Longitudinal & Transverse Waves
8.2.5End of Topic Test - Progressive Waves
8.2.6Electromagnetic Waves
8.2.7Doppler Effect
8.2.8Sound Waves
8.2.9Measuring Sound Waves
8.2.10End of Topic Test - Waves
8.2.11Ultrasound Imaging
8.2.12Ultrasound Imaging 2
9Communication
9.1Communication Channels
9.2Digital Communication
10Electric Fields
10.1Electric Fields
11Current Electricity
11.1Current Electricity
11.1.1Basics of Electricity
11.1.2Mean Drift Velocity
11.1.3Current-Voltage Characteristics
11.1.4End of Topic Test - Basics of Electricity
11.1.5Resistivity
11.1.6End of Topic Test - Resistivity & Superconductors
11.1.7Power and Conservation
11.1.8Microphones
11.1.9Components
11.1.10Relays
11.1.11Strain Gauges
12Magnetic Fields
12.1Magnetic Fields
13Modern Physics
13.1Quantum Physics
13.1.1The Photoelectric Effect
13.1.2The Photoelectric Effect Explanation
13.1.3End of Topic Test - The Photoelectric Effect
13.1.4Collisions of Electrons with Atoms
13.1.5Energy Levels & Photon Emission
13.1.6Wave-Particle Duality
13.1.7End of Topic Test - Absorption & Emission
13.1.8Band Theory
13.1.9Diagnostic X-Rays
13.1.10X-Ray Image Processing
13.1.11Absorption of X-Rays
13.1.12CT Scanners
13.2Nuclear Physics
13.2.1Rutherford Scattering
13.2.2Atomic Model
13.2.3Isotopes
13.2.4Stable & Unstable Nuclei
13.2.5A-A* (AO3/4) - Stable & Unstable Nuclei
13.2.6Alpha & Beta Radiation
13.2.7Gamma Radiation
13.2.8Particles, Antiparticles & Photons
13.2.9Quarks & Antiquarks
13.2.10Particle Interactions
13.2.11Radioactive Decay
13.2.12Half Life
13.2.13End of Topic Test - Radioactivity
13.2.14Nuclear Instability
13.2.15Mass & Energy
13.2.16Binding Energy
13.2.17A-A* (AO3/4) - Nuclear Fusion
Jump to other topics
1Physical Quantities & Units
2Measurement Techniques
3Kinematics
4Dynamics
4.1Momentum & Newton's Laws of Motion
4.2Non-Uniform Motion
4.3Linear Momentum & Conservation
4.4Force, Density & Pressure
4.4.1Fields
4.4.2Force in Uniform Fields
4.4.3Friction
4.4.4Buoyancy
4.4.5Terminal Speed
4.4.6End of Topic Test - Acceleration Due to Gravity
4.4.7Centre of Mass
4.4.8Forces & Equilibrium
4.4.9End of Topic Test - Scalars & Vectors
4.4.10Moments
4.4.11End of Topic Test - Moments & Centre of Mass
4.4.12Density
4.4.13Pressure
4.5Work, Energy & Power
5Gravitational Fields
5.1Gravitational Fields (A2 only)
6Deformation of Solids
7Thermal Physics
7.1Thermal Physics
7.1.1Temperature
7.1.2Measuring Temperature
7.1.3Ideal Gas Law
7.1.4Ideal Gases
7.1.5Boyle's Law & Charles' Law
7.1.6Molecular Kinetic Theory Model
7.1.7Molecular Kinetic Theory Model 2
7.1.8Thermal Energy Transfer
7.1.9Thermal Energy Transfer Experiments
7.1.10End of Topic Test - Thermal Energy & Ideal Gases
7.1.11First Law of Thermodynamics
8Oscillations
8.1Simple Harmonic Motion
8.2Waves
8.2.1Progressive Waves
8.2.2Intensity of Waves
8.2.3Wave Speed & Phase Difference
8.2.4Longitudinal & Transverse Waves
8.2.5End of Topic Test - Progressive Waves
8.2.6Electromagnetic Waves
8.2.7Doppler Effect
8.2.8Sound Waves
8.2.9Measuring Sound Waves
8.2.10End of Topic Test - Waves
8.2.11Ultrasound Imaging
8.2.12Ultrasound Imaging 2
9Communication
9.1Communication Channels
9.2Digital Communication
10Electric Fields
10.1Electric Fields
11Current Electricity
11.1Current Electricity
11.1.1Basics of Electricity
11.1.2Mean Drift Velocity
11.1.3Current-Voltage Characteristics
11.1.4End of Topic Test - Basics of Electricity
11.1.5Resistivity
11.1.6End of Topic Test - Resistivity & Superconductors
11.1.7Power and Conservation
11.1.8Microphones
11.1.9Components
11.1.10Relays
11.1.11Strain Gauges
12Magnetic Fields
12.1Magnetic Fields
13Modern Physics
13.1Quantum Physics
13.1.1The Photoelectric Effect
13.1.2The Photoelectric Effect Explanation
13.1.3End of Topic Test - The Photoelectric Effect
13.1.4Collisions of Electrons with Atoms
13.1.5Energy Levels & Photon Emission
13.1.6Wave-Particle Duality
13.1.7End of Topic Test - Absorption & Emission
13.1.8Band Theory
13.1.9Diagnostic X-Rays
13.1.10X-Ray Image Processing
13.1.11Absorption of X-Rays
13.1.12CT Scanners
13.2Nuclear Physics
13.2.1Rutherford Scattering
13.2.2Atomic Model
13.2.3Isotopes
13.2.4Stable & Unstable Nuclei
13.2.5A-A* (AO3/4) - Stable & Unstable Nuclei
13.2.6Alpha & Beta Radiation
13.2.7Gamma Radiation
13.2.8Particles, Antiparticles & Photons
13.2.9Quarks & Antiquarks
13.2.10Particle Interactions
13.2.11Radioactive Decay
13.2.12Half Life
13.2.13End of Topic Test - Radioactivity
13.2.14Nuclear Instability
13.2.15Mass & Energy
13.2.16Binding Energy
13.2.17A-A* (AO3/4) - Nuclear Fusion
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books