2.1.3
Properties of Gases
Properties of Gases
Properties of Gases
All gases tend to have similar properties and behave in similar ways.


Temperature of gases
Temperature of gases
- The higher the temperature of a gas, the higher the kinetic energy of the gas' particles.
- As you heat a gas, you transfer more kinetic energy to the gas' particles.
- This increases the speed of the particles.


Pressure of gases
Pressure of gases
- A gas exerts pressure on the walls of its container.
- There are lots of gas particles colliding with the container each second.
- When a gas particle collides with the wall of its container, its momentum changes and it bounces back off the wall.
- This exerts a force on both the particle and the wall.
- The pressure exerted on the wall is equal to the force (of the ball) per unit area (of the wall being hit).


Forces
Forces
- The pressure exerted on the wall is equal to the force (of the ball) per unit area (of the wall being hit).
- Each particle only exerts a small force on the wall of the container, but the combined effect of many particles colliding with the walls of the container produces a large force.


Absolute zero
Absolute zero
- There is a lowest possible temperature, called absolute zero (−273 °C or 0 K).
- At absolute zero, particles have their minimum possible kinetic energy; they do not move at all in the particle model.
- This concept is the basis of the Kelvin temperature scale, where temperature in kelvins is directly proportional to the average kinetic energy of particles.
1Motion, Forces & Energy
1.1Physical Quantities & Measurement Techniques
1.2Motion
1.2.1Average Speed
1.2.2Calculating Average Speed
1.2.3Velocity
1.2.4Acceleration
1.2.5Distance-Time Graphs
1.2.6Speed-Time Graphs
1.2.7More Speed-Time Graphs
1.2.8Calculating Uniform Acceleration
1.2.9Gravity
1.2.10Free Fall - Distance-Time & Speed-Time Graphs
1.2.11Air Resistance
1.2.12Air Resistance - Graphs
1.2.13Optional: Calculating Acceleration
1.3Mass & Weight
1.5Forces: Effects of Forces
1.6Forces: Turning Effects of Forces
1.7Forces: Centre of Gravity
1.8Momentum
1.9Energy, Work, & Power: Energy
1.10Energy, Work & Power: Work
1.11Energy, Work & Power: Energy Resources
1.12Energy, Work & Power: Power
2Thermal Physics
2.1Kinetic Particle Model of Matter
2.2Thermal Properties & Temperature
3Waves
3.1General Properties of Waves
3.2Light: Reflection & Refraction
3.3Light: Thin Lenses
3.4Light: Dispersion of Light
3.5Electromagnetic Spectrum
4Electricity & Magnetism
4.1Simple Phenomena of Magnetism
4.2Electrical Quantities: Electric Charge
4.3Electrical Quantities: Electric Current
4.4Electromotive Force & Potential Difference
4.5Electrical Quantities: Resistance
4.6Electrical Energy & Electrical Power
4.7Electric Circuits: Circuit Diagrams & Components
4.8Electric Circuits: Series & Parallel Circuits
4.9Electric Circuits: Action & Use
4.10Electrical Safety
4.11Electromagnetic Effects: Electromagnetic Induction
4.12Electromagnetic Effects: The A.C. Generator
4.13Magnetic Effect of a Current
4.14Force on a Current-Carrying Conductor
4.15Electromagnetic Effects: The D.C. Motor
4.16Electromagnetic Effects: The Transformer
5Nuclear Physics
5.1The Nuclear Model of the Atom
5.2Radioactivity: Detection of Radioactivity
5.3Radioactivity: The Three Types of Nuclear Emission
6Space Physics
6.1The Earth & the Solar System
Jump to other topics
1Motion, Forces & Energy
1.1Physical Quantities & Measurement Techniques
1.2Motion
1.2.1Average Speed
1.2.2Calculating Average Speed
1.2.3Velocity
1.2.4Acceleration
1.2.5Distance-Time Graphs
1.2.6Speed-Time Graphs
1.2.7More Speed-Time Graphs
1.2.8Calculating Uniform Acceleration
1.2.9Gravity
1.2.10Free Fall - Distance-Time & Speed-Time Graphs
1.2.11Air Resistance
1.2.12Air Resistance - Graphs
1.2.13Optional: Calculating Acceleration
1.3Mass & Weight
1.5Forces: Effects of Forces
1.6Forces: Turning Effects of Forces
1.7Forces: Centre of Gravity
1.8Momentum
1.9Energy, Work, & Power: Energy
1.10Energy, Work & Power: Work
1.11Energy, Work & Power: Energy Resources
1.12Energy, Work & Power: Power
2Thermal Physics
2.1Kinetic Particle Model of Matter
2.2Thermal Properties & Temperature
3Waves
3.1General Properties of Waves
3.2Light: Reflection & Refraction
3.3Light: Thin Lenses
3.4Light: Dispersion of Light
3.5Electromagnetic Spectrum
4Electricity & Magnetism
4.1Simple Phenomena of Magnetism
4.2Electrical Quantities: Electric Charge
4.3Electrical Quantities: Electric Current
4.4Electromotive Force & Potential Difference
4.5Electrical Quantities: Resistance
4.6Electrical Energy & Electrical Power
4.7Electric Circuits: Circuit Diagrams & Components
4.8Electric Circuits: Series & Parallel Circuits
4.9Electric Circuits: Action & Use
4.10Electrical Safety
4.11Electromagnetic Effects: Electromagnetic Induction
4.12Electromagnetic Effects: The A.C. Generator
4.13Magnetic Effect of a Current
4.14Force on a Current-Carrying Conductor
4.15Electromagnetic Effects: The D.C. Motor
4.16Electromagnetic Effects: The Transformer
5Nuclear Physics
5.1The Nuclear Model of the Atom
5.2Radioactivity: Detection of Radioactivity
5.3Radioactivity: The Three Types of Nuclear Emission
6Space Physics
6.1The Earth & the Solar System
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books