1.1.4
Scalar & Vector Quantities
Scalar & Vector Quantities
Scalar & Vector Quantities
A quantity is anything that can be measured, such as length, mass, or time. They can be divided into two groups: scalars and vectors.


What are quantities?
What are quantities?
- Quantities are things we can measure.
- Example: length, mass, force
- Quantities can be divided into two groups:
- Scalars
- Vectors
- The difference in scalars and vectors lies in whether the quantity has direction as well as size.


Scalar quantities
Scalar quantities
- A scalar quantity has magnitude (size) only. They do not include direction.
- Example: The mass of a ball is 2 kg (we do not need to know its direction).
- Examples of scalar quantities:
- Distance
- Speed
- Time
- Mass
- Energy
- Temperature


Vector quantities
Vector quantities
- A vector quantity has both magnitude and direction.
- Example: A force of 10 N acting downwards.
- Vectors are often represented by arrows.
- The length of the arrow shows the size of vector (magnitude), and the direction it points shows the direction of vector.
- Examples of vector quantities:
- Force
- Weight
- Velocity
- Acceleration
- Momentum
- Electric field strength
- Gravitational field strength


Comparing scalars and vectors
Comparing scalars and vectors
- Scalar = Magnitude only (e.g. “60 km/h”)
- Vector = Magnitude + direction (e.g. “60 km/h north”)
- Distance vs. Displacement:
- Distance is a scalar (e.g. you walk 5 km).
- Displacement is a vector (e.g. you are 5 km north of your starting point).
- Speed vs. Velocity:
- Speed is a scalar.
- Velocity is a vector.
1Motion, Forces & Energy
1.1Physical Quantities & Measurement Techniques
1.2Motion
1.2.1Average Speed
1.2.2Calculating Average Speed
1.2.3Velocity
1.2.4Acceleration
1.2.5Distance-Time Graphs
1.2.6Speed-Time Graphs
1.2.7More Speed-Time Graphs
1.2.8Calculating Uniform Acceleration
1.2.9Gravity
1.2.10Free Fall - Distance-Time & Speed-Time Graphs
1.2.11Air Resistance
1.2.12Air Resistance - Graphs
1.2.13Optional: Calculating Acceleration
1.3Mass & Weight
1.4Density
1.5Forces: Effects of Forces
1.6Forces: Turning Effects of Forces
1.7Forces: Centre of Gravity
1.8Momentum
1.9Energy, Work, & Power: Energy
1.10Energy, Work & Power: Work
1.11Energy, Work & Power: Energy Resources
1.12Energy, Work & Power: Power
2Thermal Physics
2.1Kinetic Particle Model of Matter
2.2Thermal Properties & Temperature
3Waves
3.1General Properties of Waves
3.2Light: Reflection & Refraction
3.3Light: Thin Lenses
3.4Light: Dispersion of Light
3.5Electromagnetic Spectrum
4Electricity & Magnetism
4.1Simple Phenomena of Magnetism
4.2Electrical Quantities: Electric Charge
4.3Electrical Quantities: Electric Current
4.4Electromotive Force & Potential Difference
4.5Electrical Quantities: Resistance
4.6Electrical Energy & Electrical Power
4.7Electric Circuits: Circuit Diagrams & Components
4.8Electric Circuits: Series & Parallel Circuits
4.9Electric Circuits: Action & Use
4.10Electrical Safety
4.11Electromagnetic Effects: Electromagnetic Induction
4.12Electromagnetic Effects: The A.C. Generator
4.13Magnetic Effect of a Current
4.14Force on a Current-Carrying Conductor
4.15Electromagnetic Effects: The D.C. Motor
4.16Electromagnetic Effects: The Transformer
5Nuclear Physics
5.1The Nuclear Model of the Atom
5.2Radioactivity: Detection of Radioactivity
5.3Radioactivity: The Three Types of Nuclear Emission
6Space Physics
6.1The Earth & the Solar System
Jump to other topics
1Motion, Forces & Energy
1.1Physical Quantities & Measurement Techniques
1.2Motion
1.2.1Average Speed
1.2.2Calculating Average Speed
1.2.3Velocity
1.2.4Acceleration
1.2.5Distance-Time Graphs
1.2.6Speed-Time Graphs
1.2.7More Speed-Time Graphs
1.2.8Calculating Uniform Acceleration
1.2.9Gravity
1.2.10Free Fall - Distance-Time & Speed-Time Graphs
1.2.11Air Resistance
1.2.12Air Resistance - Graphs
1.2.13Optional: Calculating Acceleration
1.3Mass & Weight
1.4Density
1.5Forces: Effects of Forces
1.6Forces: Turning Effects of Forces
1.7Forces: Centre of Gravity
1.8Momentum
1.9Energy, Work, & Power: Energy
1.10Energy, Work & Power: Work
1.11Energy, Work & Power: Energy Resources
1.12Energy, Work & Power: Power
2Thermal Physics
2.1Kinetic Particle Model of Matter
2.2Thermal Properties & Temperature
3Waves
3.1General Properties of Waves
3.2Light: Reflection & Refraction
3.3Light: Thin Lenses
3.4Light: Dispersion of Light
3.5Electromagnetic Spectrum
4Electricity & Magnetism
4.1Simple Phenomena of Magnetism
4.2Electrical Quantities: Electric Charge
4.3Electrical Quantities: Electric Current
4.4Electromotive Force & Potential Difference
4.5Electrical Quantities: Resistance
4.6Electrical Energy & Electrical Power
4.7Electric Circuits: Circuit Diagrams & Components
4.8Electric Circuits: Series & Parallel Circuits
4.9Electric Circuits: Action & Use
4.10Electrical Safety
4.11Electromagnetic Effects: Electromagnetic Induction
4.12Electromagnetic Effects: The A.C. Generator
4.13Magnetic Effect of a Current
4.14Force on a Current-Carrying Conductor
4.15Electromagnetic Effects: The D.C. Motor
4.16Electromagnetic Effects: The Transformer
5Nuclear Physics
5.1The Nuclear Model of the Atom
5.2Radioactivity: Detection of Radioactivity
5.3Radioactivity: The Three Types of Nuclear Emission
6Space Physics
6.1The Earth & the Solar System
Unlock your full potential with Seneca Premium
Unlimited access to 10,000+ open-ended exam questions
Mini-mock exams based on your study history
Unlock 800+ premium courses & e-books